PKHeX/PKHeX.Core/PKM/HOME/HomeCrypto.cs
Kurt 95fbf66a6e
Refactor: Gen3/4 Lead Encounters, property fixing (#4193)
In addition to the Method 1 (and other sibling PIDIV types) correlation, an encounter can only be triggered if the calls prior land on the Method {1} seed. The RNG community has dubbed these patterns as "Method J" (D/P/Pt), "Method K" (HG/SS), and "Method H" (Gen3, coined by yours truly). The basic gist of these is that they are pre-requisites, like the Shadow locks of Colosseum/XD. 

Rename/re-type a bunch of properties to get the codebase more in line with correct property names & more obvious underlying types.
2024-02-22 21:20:54 -06:00

203 lines
7.7 KiB
C#

using System;
using System.IO;
using System.Runtime.CompilerServices;
using System.Security.Cryptography;
using static System.Buffers.Binary.BinaryPrimitives;
namespace PKHeX.Core;
/// <summary>
/// Logic related to Encrypting and Decrypting Pokémon Home entity data.
/// </summary>
public static class HomeCrypto
{
public const int Version1 = 1;
public const int Version2 = 2;
public const int Version3 = 3;
public const int SIZE_1HEADER = 0x10; // 16
public const int SIZE_1CORE = 0xC8; // 200
public const int SIZE_1GAME_PB7 = 0x3B; // 59
public const int SIZE_1GAME_PK8 = 0x44; // 68
public const int SIZE_1GAME_PA8 = 0x3C; // 60
public const int SIZE_1GAME_PB8 = 0x2B; // 43
public const int SIZE_1STORED = 0x1EE; // 494
public const int SIZE_2CORE = 0xC4; // 196
public const int SIZE_2GAME_PB7 = 0x3F; // 63
public const int SIZE_2GAME_PK8 = 0x48; // 72
public const int SIZE_2GAME_PA8 = 0x40; // 64
public const int SIZE_2GAME_PB8 = 0x2F; // 47
public const int SIZE_2GAME_PK9 = 0x3D; // 61
public const int SIZE_2STORED = 0x23A; // 570
public const int SIZE_3GAME_PK9 = 0x3D + 0xD; // 61
public const int SIZE_3STORED = 0x247; // 583
public const int SIZE_STORED = SIZE_3STORED;
public const int SIZE_CORE = SIZE_2CORE;
public const int VersionLatest = Version3;
public static bool IsKnownVersion(ushort version) => version is Version1 or Version2 or Version3;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void SetEncryptionKey(Span<byte> key, ulong seed)
{
WriteUInt64BigEndian(key, seed ^ 0x6B7B5966193DB88B);
WriteUInt64BigEndian(key.Slice(8, 8), seed & 0x937EC53BF8856E87);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void SetEncryptionIv(Span<byte> iv, ulong seed)
{
WriteUInt64BigEndian(iv, seed ^ 0x5F4ED4E84975D976);
WriteUInt64BigEndian(iv.Slice(8, 8), seed | 0xE3CDA917EA9E489C);
}
/// <summary>
/// Encryption and Decryption are asymmetrical operations, but we reuse the same method and pivot off the inputs.
/// </summary>
/// <param name="data">Data to crypt, not in place.</param>
/// <param name="decrypt">Encryption or Decryption mode</param>
/// <returns>New array with result data.</returns>
/// <exception cref="ArgumentException"> if the format is not supported.</exception>
public static byte[] Crypt(ReadOnlySpan<byte> data, bool decrypt = true)
{
var format = ReadUInt16LittleEndian(data);
if (!IsKnownVersion(format))
throw new ArgumentException($"Unrecognized format: {format}");
ulong seed = ReadUInt64LittleEndian(data.Slice(2, 8));
var key = new byte[0x10];
SetEncryptionKey(key, seed);
var iv = new byte[0x10];
SetEncryptionIv(iv, seed);
var dataSize = ReadUInt16LittleEndian(data[0xE..0x10]);
var result = new byte[SIZE_1HEADER + dataSize];
data[..SIZE_1HEADER].CopyTo(result); // header
Crypt(data, key, iv, result, dataSize, decrypt);
return result;
}
private static void Crypt(ReadOnlySpan<byte> data, byte[] key, byte[] iv, byte[] result, ushort dataSize, bool decrypt)
{
using var aes = Aes.Create();
aes.Mode = CipherMode.CBC;
aes.Padding = PaddingMode.None; // Handle PKCS7 manually.
var tmp = data[SIZE_1HEADER..].ToArray();
using var ms = new MemoryStream(tmp);
using var transform = decrypt ? aes.CreateDecryptor(key, iv) : aes.CreateEncryptor(key, iv);
using var cs = new CryptoStream(ms, transform, CryptoStreamMode.Read);
var size = cs.Read(result, SIZE_1HEADER, dataSize);
System.Diagnostics.Debug.Assert(SIZE_1HEADER + size == data.Length);
}
/// <summary>
/// Decrypts the input <see cref="data"/> data into a new array if it is encrypted, and updates the reference.
/// </summary>
/// <remarks>Format encryption check</remarks>
public static void DecryptIfEncrypted(ref byte[] data)
{
var span = data.AsSpan();
var format = ReadUInt16LittleEndian(span);
if (IsKnownVersion(format))
{
if (GetIsEncrypted(span, format))
data = Crypt(span);
}
else
{
throw new ArgumentException($"Unrecognized format: {format}");
}
}
/// <summary>
/// Converts the input <see cref="pk"/> data into their encrypted state.
/// </summary>
public static byte[] Encrypt(ReadOnlySpan<byte> pk)
{
var result = Crypt(pk, false);
RefreshChecksum(result, result);
return result;
}
private static void RefreshChecksum(ReadOnlySpan<byte> encrypted, Span<byte> dest)
{
var chk = GetChecksum1(encrypted);
WriteUInt32LittleEndian(dest[0xA..0xE], chk);
}
/// <summary>
/// Calculates the checksum of format 1 data.
/// </summary>
public static uint GetChecksum1(ReadOnlySpan<byte> encrypted) => GetCHK(encrypted[SIZE_1HEADER..]);
/// <summary>
/// Checks if the format 1 data is encrypted.
/// </summary>
/// <returns>True if encrypted.</returns>
public static bool GetIsEncrypted(ReadOnlySpan<byte> data, ushort format) => format switch
{
Version1 => IsEncryptedCore1(data),
Version2 => IsEncryptedCore2(data),
Version3 => IsEncryptedCore3(data),
_ => throw new ArgumentException($"Unrecognized format: {format}"),
};
private static bool IsEncryptedCore1(ReadOnlySpan<byte> data)
{
var core = data.Slice(SIZE_1HEADER + 2, SIZE_1CORE);
// Strings should be \0000 terminated if decrypted.
// Any non-zero value is a sign of encryption.
if (ReadUInt16LittleEndian(core[0xB5..]) != 0) // OT
return true; // OriginalTrainerName final terminator should be 0 if decrypted.
if (ReadUInt16LittleEndian(core[0x60..]) != 0) // Nick
return true; // Nickname final terminator should be 0 if decrypted.
if (ReadUInt16LittleEndian(core[0x88..]) != 0) // HT
return true; // HandlingTrainerName final terminator should be 0 if decrypted.
//// Fall back to checksum.
//return ReadUInt32LittleEndian(data[0xA..0xE]) == GetChecksum1(data);
return false; // 64 bits checked is enough to feel safe about this check.
}
private static bool IsEncryptedCore2(ReadOnlySpan<byte> data)
{
var core = data.Slice(SIZE_1HEADER + 2, SIZE_2CORE);
if (ReadUInt16LittleEndian(core[0xB1..]) != 0)
return true; // OriginalTrainerName final terminator should be 0 if decrypted.
if (ReadUInt16LittleEndian(core[0x5C..]) != 0)
return true; // Nickname final terminator should be 0 if decrypted.
if (ReadUInt16LittleEndian(core[0x84..]) != 0)
return true; // HandlingTrainerName final terminator should be 0 if decrypted.
//// Fall back to checksum.
//return ReadUInt32LittleEndian(data[0xA..0xE]) == GetChecksum1(data);
return false; // 64 bits checked is enough to feel safe about this check.
}
private static bool IsEncryptedCore3(ReadOnlySpan<byte> data) => IsEncryptedCore2(data); // Same struct as Core version 2.
/// <summary>
/// Gets the checksum of a Pokémon's AES-encrypted data.
/// </summary>
/// <param name="data">AES-Encrypted Pokémon data.</param>
public static uint GetCHK(ReadOnlySpan<byte> data)
{
uint chk = 0;
for (var i = 0; i < data.Length; i += 100)
{
var chunkSize = Math.Min(data.Length - i, 100);
var span = data.Slice(i, chunkSize);
chk ^= Checksums.CRC32Invert(span);
}
return chk;
}
}