PKHeX/PKHeX.Core/Saves/Encryption/GeniusCrypto.cs
Kurt 47071b41f3
Refactoring: Span-based value writes and method signatures (#3361)
Existing `get`/`set` logic is flawed in that it doesn't work on Big Endian operating systems, and it allocates heap objects when it doesn't need to.

`System.Buffers.Binary.BinaryPrimitives` in the `System.Memory` NuGet package provides both Little Endian and Big Endian methods to read and write data; all the `get`/`set` operations have been reworked to use this new API. This removes the need for PKHeX's manual `BigEndian` class, as all functions are already covered by the BinaryPrimitives API.

The `StringConverter` has now been rewritten to accept a Span to read from & write to, no longer requiring a temporary StringBuilder.

Other Fixes included:
- The Super Training UI for Gen6 has been reworked according to the latest block structure additions.
- Cloning a Stadium2 Save File now works correctly (opening from the Folder browser list).
- Checksum & Sanity properties removed from parent PKM class, and is now implemented via interface.
2022-01-02 21:35:59 -08:00

77 lines
2.9 KiB
C#

using System;
using static System.Buffers.Binary.BinaryPrimitives;
namespace PKHeX.Core
{
/// <summary>
/// Genius Sonority's logic for <see cref="GameVersion.XD"/> and <see cref="GameVersion.BATREV"/> encryption.
/// </summary>
public static class GeniusCrypto
{
public static byte[] Decrypt(ReadOnlySpan<byte> input, int start, int end, Span<ushort> keys)
{
var output = input.ToArray();
Decrypt(input, start, end, keys, output);
return output;
}
public static void Decrypt(ReadOnlySpan<byte> input, int start, int end, Span<ushort> keys, Span<byte> output)
{
for (int ofs = start; ofs < end; ofs += 8)
{
for (int i = 0; i < keys.Length; i++)
{
var index = ofs + (i * 2);
ushort val = ReadUInt16BigEndian(input[index..]);
val -= keys[i];
WriteUInt16BigEndian(output[index..], val);
}
AdvanceKeys(keys);
}
}
public static byte[] Encrypt(ReadOnlySpan<byte> input, int start, int end, Span<ushort> keys)
{
var output = input.ToArray();
Encrypt(input, start, end, keys, output);
return output;
}
public static void Encrypt(ReadOnlySpan<byte> input, int start, int end, Span<ushort> keys, Span<byte> output)
{
for (int ofs = start; ofs < end; ofs += 8)
{
for (int i = 0; i < keys.Length; i++)
{
var index = ofs + (i * 2);
ushort val = ReadUInt16BigEndian(input[index..]);
val += keys[i];
WriteUInt16BigEndian(output[index..], val);
}
AdvanceKeys(keys);
}
}
private static void AdvanceKeys(Span<ushort> keys)
{
var k3 = keys[3] + 0x13;
var k2 = keys[2] + 0x17;
var k1 = keys[1] + 0x29;
var k0 = keys[0] + 0x43;
// Rotate 4bit groups across the diagonal [ / ] after biasing each u16 (no overflow):
// 0123 FB73
// 4567 EA62
// 89AB becomes D951
// CDEF C840
// We can leave our intermediary types as int as the bit-masks remove any overflow.
keys[3] = (ushort)((k0 >> 12 & 0xf) | (k1 >> 8 & 0xf0) | (k2 >> 4 & 0xf00) | (k3 & 0xf000));
keys[2] = (ushort)((k0 >> 08 & 0xf) | (k1 >> 4 & 0xf0) | (k2 & 0xf00) | (k3 << 04 & 0xf000));
keys[1] = (ushort)((k0 >> 04 & 0xf) | (k1 & 0xf0) | (k2 << 4 & 0xf00) | (k3 << 08 & 0xf000));
keys[0] = (ushort)((k0 & 0xf) | (k1 << 4 & 0xf0) | (k2 << 8 & 0xf00) | (k3 << 12 & 0xf000));
}
}
}