using System; using System.Collections.Generic; using System.Linq; using System.Runtime.InteropServices; using static System.Buffers.Binary.BinaryPrimitives; namespace PKHeX.Core; /// /// Generation 5 C-Gear Background Image /// public sealed class CGearBackground { public const string Extension = "cgb"; public const string Filter = $"C-Gear Background|*.{Extension}"; public const int Width = 256; // px public const int Height = 192; // px public const int SIZE_CGB = 0x2600; private const int ColorCount = 0x10; private const int TileSize = 8; private const int TileCount = (Width / TileSize) * (Height / TileSize); // 0x300 /* CGearBackground Documentation * CGearBackgrounds (.cgb) are tiled images. * Tiles are 8x8, and serve as a tileset for building the image. * The first 0x2000 bytes are the tile building region. * A tile to have two pixels defined in one byte of space. * A tile takes up 64 pixels, 32 bytes, 0x20 chunks. * The last tile is actually the colors used in the image (16bit). * Only 16 colors can be used for the entire image. * 255 tiles may be chosen from, as (0x2000-(0x20))/0x20 = 0xFF * The last 0x600 bytes are the tiles used. * 256/8 = 32, 192/8 = 24 * 32 * 24 = 0x300 * The tiles are chosen based on the 16bit index of the tile. * 0x300 * 2 = 0x600! * * CGearBackgrounds tilemap (when stored on BW) employs some obfuscation. * BW obfuscates by adding 0xA0A0. * The obfuscated number is then tweaked by adding 15*(i/17) * To reverse, use a similar reverse calculation * PSK files are basically raw game rips (obfuscated) * CGB files are un-obfuscated / B2W2. * Due to BW and B2W2 using different obfuscation adds, PSK files are incompatible between the versions. */ public CGearBackground(byte[] data) { if (data.Length != SIZE_CGB) throw new ArgumentOutOfRangeException(nameof(data)); // decode for easy handling if (!IsCGB(data)) { _psk = data; data = PSKtoCGB(data); } else { _cgb = data; } var Region1 = data.AsSpan(0, 0x1FE0); var ColorData = data.Slice(0x1FE0, 0x20); var Region2 = data.Slice(0x2000, 0x600); ColorPalette = new int[ColorCount]; for (int i = 0; i < ColorPalette.Length; i++) ColorPalette[i] = GetRGB555_16(ReadUInt16LittleEndian(ColorData.AsSpan(i * 2))); Tiles = new Tile[0xFF]; for (int i = 0; i < Tiles.Length; i++) { byte[] tiledata = Region1.Slice(i * Tile.SIZE_TILE, Tile.SIZE_TILE).ToArray(); Tiles[i] = new Tile(tiledata); Tiles[i].SetTile(ColorPalette); } Map = new TileMap(Region2); } public readonly int[] ColorPalette; public readonly Tile[] Tiles; public readonly TileMap Map; // Track the original data private readonly byte[]? _cgb; private readonly byte[]? _psk; /// /// Writes the data to a binary form. /// /// True if the destination game is , otherwise false for . /// Serialized skin data for writing to the save file public byte[] GetSkin(bool B2W2) => B2W2 ? GetCGB() : GetPSK(); private byte[] GetCGB() => _cgb ?? Write(); private byte[] GetPSK() => _psk ?? CGBtoPSK(Write()); private byte[] Write() { byte[] data = new byte[SIZE_CGB]; for (int i = 0; i < Tiles.Length; i++) Array.Copy(Tiles[i].Write(), 0, data, i*Tile.SIZE_TILE, Tile.SIZE_TILE); for (int i = 0; i < ColorPalette.Length; i++) { var value = GetRGB555(ColorPalette[i]); var span = data.AsSpan(0x1FE0 + (i * 2)); WriteUInt16LittleEndian(span, value); } Array.Copy(Map.Write(), 0, data, 0x2000, 0x600); return data; } private static bool IsCGB(ReadOnlySpan data) { if (data.Length != SIZE_CGB) return false; // check odd bytes for anything not rotation flag for (int i = 0x2000; i < 0x2600; i += 2) { if ((data[i + 1] & ~0b1100) != 0) return false; } return true; } private static byte[] CGBtoPSK(ReadOnlySpan cgb) { byte[] psk = cgb.ToArray(); for (int i = 0x2000; i < 0x2600; i += 2) { var span = psk.AsSpan(i); var tileVal = ReadUInt16LittleEndian(span); int val = GetPSKValue(tileVal); WriteUInt16LittleEndian(span, (ushort)val); } return psk; } private static int GetPSKValue(ushort val) { int rot = val & 0xFF00; int tile = val & 0x00FF; if (tile == 0xFF) // invalid tile? tile = 0; return tile + (15 * (tile / 17)) + 0xA0A0 + rot; } private static byte[] PSKtoCGB(ReadOnlySpan psk) { byte[] cgb = psk.ToArray(); var tileRegion = cgb.AsSpan(0x2000, 0x600); ConvertTilesPSKtoCGB(tileRegion); return cgb; } private static void ConvertTilesPSKtoCGB(Span tileRegion) { for (int i = 0; i < tileRegion.Length; i += 2) { var exist = tileRegion.Slice(i, 2); var value = ReadUInt16LittleEndian(exist); var index = ValToIndex(value); byte tile = (byte)index; byte rot = (byte)(index >> 8); if (tile == 0xFF) tile = 0; exist[0] = tile; exist[1] = rot; } } private static int ValToIndex(ushort val) { var trunc = (val & 0x3FF); if (trunc is < 0xA0 or > 0x280) return (val & 0x5C00) | 0xFF; return ((val % 0x20) + (17 * ((trunc - 0xA0) / 0x20))) | (val & 0x5C00); } private static byte Convert8to5(int colorval) { byte i = 0; while (colorval > Convert5To8[i]) i++; return i; } private static int GetRGB555_32(int val) { var R = (val >> 00) & 0xFF; var G = (val >> 08) & 0xFF; var B = (val >> 16) & 0xFF; return (0xFF << 24) | (B << 16) | (G << 8) | R; } private static int GetRGB555_16(ushort val) { int R = (val >> 0) & 0x1F; int G = (val >> 5) & 0x1F; int B = (val >> 10) & 0x1F; R = Convert5To8[R]; G = Convert5To8[G]; B = Convert5To8[B]; return (0xFF << 24) | (R << 16) | (G << 8) | B; } private static ushort GetRGB555(int v) { var R = (byte)(v >> 16); var G = (byte)(v >> 8); var B = (byte)(v >> 0); int val = 0; val |= Convert8to5(R) << 0; val |= Convert8to5(G) << 5; val |= Convert8to5(B) << 10; return (ushort)val; } private static ReadOnlySpan Convert5To8 => new byte[] // 0x20 entries { 0x00,0x08,0x10,0x18,0x20,0x29,0x31,0x39, 0x41,0x4A,0x52,0x5A,0x62,0x6A,0x73,0x7B, 0x83,0x8B,0x94,0x9C,0xA4,0xAC,0xB4,0xBD, 0xC5,0xCD,0xD5,0xDE,0xE6,0xEE,0xF6,0xFF, }; /// /// Creates a new C-Gear Background object from an input image data byte array, with 32 bits per pixel. /// /// Image data /// new C-Gear Background object public static CGearBackground GetBackground(ReadOnlySpan data) { const int bpp = 4; if (Width * Height * bpp != data.Length) throw new ArgumentException("Invalid image data size."); var pixels = MemoryMarshal.Cast(data); var colors = GetColorData(pixels); var Palette = colors.Distinct().ToArray(); if (Palette.Length > ColorCount) throw new ArgumentException($"Too many unique colors. Expected <= 16, got {Palette.Length}"); var tiles = GetTiles(colors, Palette); GetTileList(tiles, out List tilelist, out TileMap tm); if (tilelist.Count >= 0xFF) throw new ArgumentException($"Too many unique tiles. Expected < 256, received {tilelist.Count}."); // Finished! return new CGearBackground(Palette, tilelist.ToArray(), tm); } private static int[] GetColorData(ReadOnlySpan pixels) { int[] colors = new int[pixels.Length]; for (int i = 0; i < pixels.Length; i++) colors[i] = GetRGB555_32(pixels[i]); return colors; } private static Tile[] GetTiles(ReadOnlySpan colors, ReadOnlySpan palette) { var tiles = new Tile[TileCount]; for (int i = 0; i < tiles.Length; i++) tiles[i] = GetTile(colors, palette, i); return tiles; } private static Tile GetTile(ReadOnlySpan colors, ReadOnlySpan palette, int tileIndex) { int x = (tileIndex * 8) % Width; int y = 8 * ((tileIndex * 8) / Width); var t = new Tile(); for (uint ix = 0; ix < 8; ix++) { for (uint iy = 0; iy < 8; iy++) { int index = ((int) (y + iy) * Width) + (int) (x + ix); int c = colors[index]; t.ColorChoices[(ix % 8) + (iy * 8)] = palette.IndexOf(c); } } t.SetTile(palette); return t; } private static void GetTileList(ReadOnlySpan tiles, out List tilelist, out TileMap tm) { tilelist = new List { tiles[0] }; tm = new TileMap(new byte[2 * Width * Height / 64]); // start at 1 as the 0th tile is always non-duplicate for (int i = 1; i < tm.TileChoices.Length; i++) FindPossibleRotatedTile(tiles[i], tilelist, tm, i); } private static void FindPossibleRotatedTile(Tile t, IList tilelist, TileMap tm, int tileIndex) { // Test all tiles currently in the list for (int j = 0; j < tilelist.Count; j++) { int rotVal = t.GetRotationValue(tilelist[j].ColorChoices); if (rotVal <= -1) continue; tm.TileChoices[tileIndex] = j; tm.Rotations[tileIndex] = rotVal; return; } // No tile found, add to list tilelist.Add(t); tm.TileChoices[tileIndex] = tilelist.Count - 1; tm.Rotations[tileIndex] = 0; } private CGearBackground(int[] Palette, Tile[] tilelist, TileMap tm) { Map = tm; ColorPalette = Palette; Tiles = tilelist; } public byte[] GetImageData() { byte[] data = new byte[4 * Width * Height]; for (int i = 0; i < Map.TileChoices.Length; i++) { int x = (i * 8) % Width; int y = 8 * ((i * 8) / Width); var choice = Map.TileChoices[i] % (Tiles.Length + 1); var tile = Tiles[choice]; var tileData = tile.Rotate(Map.Rotations[i]); for (int iy = 0; iy < 8; iy++) { int src = iy * (4 * 8); int dest = (((y+iy) * Width) + x) * 4; Array.Copy(tileData, src, data, dest, 4*8); } } return data; } } public sealed class Tile { internal const int SIZE_TILE = 0x20; private const int TileWidth = 8; private const int TileHeight = 8; internal readonly int[] ColorChoices; private byte[] PixelData; private byte[]? PixelDataX; private byte[]? PixelDataY; internal Tile() : this(new byte[SIZE_TILE]) { } internal Tile(byte[] data) { if (data.Length != SIZE_TILE) throw new ArgumentException(nameof(data)); ColorChoices = new int[TileWidth * TileHeight]; for (int i = 0; i < data.Length; i++) { var ofs = i * 2; ColorChoices[ofs + 0] = data[i] & 0xF; ColorChoices[ofs + 1] = data[i] >> 4; } PixelData = Array.Empty(); } internal void SetTile(ReadOnlySpan palette) => PixelData = GetTileData(palette); private byte[] GetTileData(ReadOnlySpan Palette) { const int pixels = TileWidth * TileHeight; byte[] data = new byte[pixels * 4]; for (int i = 0; i < pixels; i++) { var choice = ColorChoices[i]; var value = Palette[choice]; var span = data.AsSpan(4 * i, 4); WriteInt32LittleEndian(span, value); } return data; } internal byte[] Write() { byte[] data = new byte[SIZE_TILE]; for (int i = 0; i < data.Length; i++) { var span = ColorChoices.AsSpan(i * 2, 2); data[i] = (byte)((span[0] & 0xF) | ((span[1] & 0xF) << 4)); } return data; } public byte[] Rotate(int rotFlip) { if (rotFlip == 0) return PixelData; if ((rotFlip & 4) > 0) return PixelDataX ??= FlipX(PixelData, TileWidth); if ((rotFlip & 8) > 0) return PixelDataY ??= FlipY(PixelData, TileHeight); return PixelData; } private static byte[] FlipX(ReadOnlySpan data, int width, int bpp = 4) { byte[] result = new byte[data.Length]; int pixels = data.Length / bpp; for (int i = 0; i < pixels; i++) { int x = i % width; int y = i / width; x = width - x - 1; // flip x int dest = ((y * width) + x) * bpp; var o = 4 * i; result[dest + 0] = data[o + 0]; result[dest + 1] = data[o + 1]; result[dest + 2] = data[o + 2]; result[dest + 3] = data[o + 3]; } return result; } private static byte[] FlipY(ReadOnlySpan data, int height, int bpp = 4) { byte[] result = new byte[data.Length]; int pixels = data.Length / bpp; int width = pixels / height; for (int i = 0; i < pixels; i++) { int x = i % width; int y = i / width; y = height - y - 1; // flip x int dest = ((y * width) + x) * bpp; var o = 4 * i; result[dest + 0] = data[o + 0]; result[dest + 1] = data[o + 1]; result[dest + 2] = data[o + 2]; result[dest + 3] = data[o + 3]; } return result; } internal int GetRotationValue(ReadOnlySpan tileColors) { // Check all rotation types if (tileColors.SequenceEqual(ColorChoices)) return 0; if (IsMirrorX(tileColors)) return 4; if (IsMirrorY(tileColors)) return 8; if (IsMirrorXY(tileColors)) return 12; return -1; } private bool IsMirrorX(ReadOnlySpan tileColors) { for (int i = 0; i < 64; i++) { if (ColorChoices[(7 - (i & 7)) + (8 * (i / 8))] != tileColors[i]) return false; } return true; } private bool IsMirrorY(ReadOnlySpan tileColors) { for (int i = 0; i < 64; i++) { if (ColorChoices[64 - (8 * (1 + (i / 8))) + (i & 7)] != tileColors[i]) return false; } return true; } private bool IsMirrorXY(ReadOnlySpan tileColors) { for (int i = 0; i < 64; i++) { if (ColorChoices[63 - i] != tileColors[i]) return false; } return true; } } public sealed class TileMap { public readonly int[] TileChoices; public readonly int[] Rotations; internal TileMap(byte[] data) { TileChoices = new int[data.Length / 2]; Rotations = new int[data.Length / 2]; for (int i = 0; i < data.Length; i += 2) { TileChoices[i / 2] = data[i]; Rotations[i / 2] = data[i + 1]; } } internal byte[] Write() { byte[] data = new byte[TileChoices.Length * 2]; for (int i = 0; i < data.Length; i += 2) { data[i] = (byte)TileChoices[i / 2]; data[i + 1] = (byte)Rotations[i / 2]; } return data; } }