using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Security.Cryptography;
namespace PKHeX.Core
{
///
/// MemeCrypto V2 - The Next Generation
///
///
/// A new variant of encryption and obfuscation, used in .
///
public static class SwishCrypto
{
private static readonly object _lock = new object();
private static readonly SHA256 sha256 = new SHA256CryptoServiceProvider();
private const int SIZE_HASH = 0x20;
private static readonly byte[] IntroHashBytes =
{
0x9E, 0xC9, 0x9C, 0xD7, 0x0E, 0xD3, 0x3C, 0x44, 0xFB, 0x93, 0x03, 0xDC, 0xEB, 0x39, 0xB4, 0x2A,
0x19, 0x47, 0xE9, 0x63, 0x4B, 0xA2, 0x33, 0x44, 0x16, 0xBF, 0x82, 0xA2, 0xBA, 0x63, 0x55, 0xB6,
0x3D, 0x9D, 0xF2, 0x4B, 0x5F, 0x7B, 0x6A, 0xB2, 0x62, 0x1D, 0xC2, 0x1B, 0x68, 0xE5, 0xC8, 0xB5,
0x3A, 0x05, 0x90, 0x00, 0xE8, 0xA8, 0x10, 0x3D, 0xE2, 0xEC, 0xF0, 0x0C, 0xB2, 0xED, 0x4F, 0x6D,
};
private static readonly byte[] OutroHashBytes =
{
0xD6, 0xC0, 0x1C, 0x59, 0x8B, 0xC8, 0xB8, 0xCB, 0x46, 0xE1, 0x53, 0xFC, 0x82, 0x8C, 0x75, 0x75,
0x13, 0xE0, 0x45, 0xDF, 0x32, 0x69, 0x3C, 0x75, 0xF0, 0x59, 0xF8, 0xD9, 0xA2, 0x5F, 0xB2, 0x17,
0xE0, 0x80, 0x52, 0xDB, 0xEA, 0x89, 0x73, 0x99, 0x75, 0x79, 0xAF, 0xCB, 0x2E, 0x80, 0x07, 0xE6,
0xF1, 0x26, 0xE0, 0x03, 0x0A, 0xE6, 0x6F, 0xF6, 0x41, 0xBF, 0x7E, 0x59, 0xC2, 0xAE, 0x55, 0xFD,
};
private static readonly byte[] StaticXorpad =
{
0xA0, 0x92, 0xD1, 0x06, 0x07, 0xDB, 0x32, 0xA1, 0xAE, 0x01, 0xF5, 0xC5, 0x1E, 0x84, 0x4F, 0xE3,
0x53, 0xCA, 0x37, 0xF4, 0xA7, 0xB0, 0x4D, 0xA0, 0x18, 0xB7, 0xC2, 0x97, 0xDA, 0x5F, 0x53, 0x2B,
0x75, 0xFA, 0x48, 0x16, 0xF8, 0xD4, 0x8A, 0x6F, 0x61, 0x05, 0xF4, 0xE2, 0xFD, 0x04, 0xB5, 0xA3,
0x0F, 0xFC, 0x44, 0x92, 0xCB, 0x32, 0xE6, 0x1B, 0xB9, 0xB1, 0x2E, 0x01, 0xB0, 0x56, 0x53, 0x36,
0xD2, 0xD1, 0x50, 0x3D, 0xDE, 0x5B, 0x2E, 0x0E, 0x52, 0xFD, 0xDF, 0x2F, 0x7B, 0xCA, 0x63, 0x50,
0xA4, 0x67, 0x5D, 0x23, 0x17, 0xC0, 0x52, 0xE1, 0xA6, 0x30, 0x7C, 0x2B, 0xB6, 0x70, 0x36, 0x5B,
0x2A, 0x27, 0x69, 0x33, 0xF5, 0x63, 0x7B, 0x36, 0x3F, 0x26, 0x9B, 0xA3, 0xED, 0x7A, 0x53, 0x00,
0xA4, 0x48, 0xB3, 0x50, 0x9E, 0x14, 0xA0, 0x52, 0xDE, 0x7E, 0x10, 0x2B, 0x1B, 0x77, 0x6E,
};
private static void CryptStaticXorpadBytes(byte[] data)
{
for (var i = 0; i < data.Length - SIZE_HASH; i++)
data[i] ^= StaticXorpad[i % StaticXorpad.Length];
}
private static byte[] ComputeHash(byte[] data)
{
// can't use IncrementalHash.CreateHash(HashAlgorithmName.SHA256); cuz net46 doesn't support
using var stream = new MemoryStream();
stream.Write(IntroHashBytes, 0, IntroHashBytes.Length);
stream.Write(data, 0, data.Length - SIZE_HASH); // hash is at the end
stream.Write(OutroHashBytes, 0, OutroHashBytes.Length);
stream.Seek(0, SeekOrigin.Begin);
lock (_lock)
{
return sha256.ComputeHash(stream);
}
}
///
/// Checks if the file is a rough example of a save file.
///
/// Encrypted save data
/// True if hash matches
public static bool GetIsHashValid(byte[] data)
{
if (data.Length != SaveUtil.SIZE_G8SWSH)
return false;
var hash = ComputeHash(data);
for (int i = 0; i < hash.Length; i++)
{
if (hash[i] != data[data.Length - SIZE_HASH + i])
return false;
}
return true;
}
///
/// Decrypts the save data.
///
/// Encrypted save data
/// Decrypted blocks.
///
/// Hash is assumed to be valid before calling this method.
///
public static IReadOnlyList Decrypt(byte[] data)
{
// de-ref from input data, since we're going to modify the contents in-place
var temp = (byte[])data.Clone();
CryptStaticXorpadBytes(temp);
return ReadBlocks(temp);
}
private static IReadOnlyList ReadBlocks(byte[] data)
{
var result = new List();
int offset = 0;
while (offset < data.Length - SIZE_HASH)
{
var block = SCBlock.ReadFromOffset(data, ref offset);
result.Add(block);
}
return result;
}
///
/// Tries to encrypt the save data.
///
/// Decrypted save data
/// Encrypted save data.
public static byte[] Encrypt(IReadOnlyList blocks)
{
using var ms = new MemoryStream();
foreach (var block in blocks)
{
var enc_data = block.GetEncryptedData();
ms.Write(enc_data, 0, enc_data.Length);
}
// Allocate hash bytes at the end
var result = new byte[ms.Length + SIZE_HASH];
ms.ToArray().CopyTo(result, 0);
CryptStaticXorpadBytes(result);
var hash = ComputeHash(result);
hash.CopyTo(result, result.Length - SIZE_HASH);
return result;
}
}
///
/// Block of obtained from a encrypted block storage binary.
///
public sealed class SCBlock : BlockInfo
{
///
/// Used to encrypt the rest of the block.
///
public uint Key { get; }
///
/// What kind of block is it?
///
public SCBlockType Type { get; set; }
///
/// For : What kind of array is it?
///
public SCBlockType SubType { get; set; }
///
/// Decrypted data for this block.
///
public byte[] Data = Array.Empty();
private SCBlock(uint key) => Key = key;
internal SCBlock() { }
protected override bool ChecksumValid(byte[] data) => true;
protected override void SetChecksum(byte[] data) { }
public SCBlock Clone()
{
var block = (SCBlock)MemberwiseClone();
block.Data = (byte[])Data.Clone();
return block;
}
private static int GetArrayEntrySize(SCBlockType type)
{
switch (type)
{
case SCBlockType.Common3:
case SCBlockType.Single1:
case SCBlockType.Single5:
return 1;
case SCBlockType.Single2:
case SCBlockType.Single6:
return 2;
case SCBlockType.Single3:
case SCBlockType.Single7:
case SCBlockType.Single9:
return 4;
case SCBlockType.Single4:
case SCBlockType.Single8:
case SCBlockType.Single10:
return 8;
default:
throw new ArgumentException(nameof(type));
}
}
private static void XorshiftAdvance(ref uint key)
{
key ^= (key << 2);
key ^= (key >> 15);
key ^= (key << 13);
}
private static uint PopCount(ulong key)
{
// https://en.wikipedia.org/wiki/Hamming_weight#Efficient_implementation
const ulong m1 = 0x5555555555555555;
const ulong m2 = 0x3333333333333333;
const ulong m4 = 0x0f0f0f0f0f0f0f0f;
// const ulong m8 = 0x00ff00ff00ff00ff;
// const ulong m16 = 0x0000ffff0000ffff;
// const ulong m32 = 0x00000000ffffffff;
const ulong h01 = 0x0101010101010101;
key -= (key >> 1) & m1;
key = (key & m2) + ((key >> 2) & m2);
key = (key + (key >> 4)) & m4;
return (uint)((key * h01) >> 56);
}
private byte[] GetKeyStream(int start, int size)
{
// Initialize the xorshift rng.
var key = Key;
var pop_count = PopCount(Key);
for (var i = 0; i < pop_count; i++)
XorshiftAdvance(ref key);
int ofs = 0;
int out_ofs = 0;
while (ofs + 4 < start)
{
// Discard keystream until we're at offset.
XorshiftAdvance(ref key);
ofs += 4;
}
var result = new byte[size];
// If we aren't aligned, handle that.
if (ofs < start)
{
int cur_size = Math.Min(size, 4 - (start - ofs));
Array.Copy(BitConverter.GetBytes(key), start - ofs, result, out_ofs, cur_size);
out_ofs += cur_size;
XorshiftAdvance(ref key);
}
// Generate keystream until we're done.
while (out_ofs < size)
{
int cur_size = Math.Min(size - out_ofs, 4);
Array.Copy(BitConverter.GetBytes(key), 0, result, out_ofs, cur_size);
out_ofs += cur_size;
XorshiftAdvance(ref key);
}
return result;
}
private byte[] CryptBytes(byte[] data, int input_offset, int start, int size)
{
var result = new byte[size];
Array.Copy(data, input_offset + start, result, 0, result.Length);
var key_stream = GetKeyStream(start, size);
for (var i = 0; i < result.Length; i++)
result[i] ^= key_stream[i];
return result;
}
private int GetEncryptedDataSize()
{
const int size = 4 + 1; // key + type
switch (Type)
{
case SCBlockType.Common1:
case SCBlockType.Common2:
case SCBlockType.Common3:
return size;
case SCBlockType.Data:
return size + 4 + Data.Length;
case SCBlockType.Array:
return size + 5 + Data.Length;
case SCBlockType.Single1:
case SCBlockType.Single2:
case SCBlockType.Single3:
case SCBlockType.Single4:
case SCBlockType.Single5:
case SCBlockType.Single6:
case SCBlockType.Single7:
case SCBlockType.Single8:
case SCBlockType.Single9:
case SCBlockType.Single10:
return size + Data.Length;
default:
throw new ArgumentException(nameof(Type));
}
}
///
/// Encrypts the according to the and .
///
/// Encrypted data.
public byte[] GetEncryptedData()
{
var result = new byte[GetEncryptedDataSize()];
BitConverter.GetBytes(Key).CopyTo(result, 0);
result[4] = (byte)Type;
var out_ofs = 5;
if (Type == SCBlockType.Data)
{
BitConverter.GetBytes(Data.Length).CopyTo(result, out_ofs);
out_ofs += 4;
}
else if (Type == SCBlockType.Array)
{
BitConverter.GetBytes(Data.Length / GetArrayEntrySize(SubType)).CopyTo(result, out_ofs);
result[out_ofs + 4] = (byte)SubType;
out_ofs += 5;
}
Data.CopyTo(result, out_ofs);
CryptBytes(result, 4, 0, result.Length - 4).CopyTo(result, 4);
return result;
}
///
/// Reads a new object from the , determining the and during read.
///
/// Decrypted data
/// Offset the block is to be read from (modified to offset by the amount of bytes consumed).
/// New object containing all info for the block.
public static SCBlock ReadFromOffset(byte[] data, ref int offset)
{
// Create block, parse its key.
var key = BitConverter.ToUInt32(data, offset);
offset += 4;
var block = new SCBlock(key);
// Parse the block's type
block.Type = (SCBlockType)block.CryptBytes(data, offset, 0, 1)[0];
switch (block.Type)
{
case SCBlockType.Common1:
case SCBlockType.Common2:
case SCBlockType.Common3:
// Block types A, B, Common are empty, and have no extra data.
offset++;
break;
case SCBlockType.Data:
var num_bytes = BitConverter.ToInt32(block.CryptBytes(data, offset, 1, 4), 0);
block.Data = block.CryptBytes(data, offset, 5, num_bytes);
offset += 5 + num_bytes;
break;
case SCBlockType.Array:
var num_entries = BitConverter.ToInt32(block.CryptBytes(data, offset, 1, 4), 0);
block.SubType = (SCBlockType)block.CryptBytes(data, offset, 5, 1)[0];
switch (block.SubType)
{
case SCBlockType.Common3:
// This is an array of booleans.
block.Data = block.CryptBytes(data, offset, 6, num_entries);
offset += 6 + num_entries;
Debug.Assert(block.Data.All(entry => entry <= 1));
break;
case SCBlockType.Single1:
case SCBlockType.Single2:
case SCBlockType.Single3:
case SCBlockType.Single4:
case SCBlockType.Single5:
case SCBlockType.Single6:
case SCBlockType.Single7:
case SCBlockType.Single8:
case SCBlockType.Single9:
case SCBlockType.Single10:
var entry_size = GetArrayEntrySize(block.SubType);
block.Data = block.CryptBytes(data, offset, 6, num_entries * entry_size);
offset += 6 + (num_entries * entry_size);
break;
default:
throw new ArgumentException(nameof(block.SubType));
}
break;
case SCBlockType.Single1:
case SCBlockType.Single2:
case SCBlockType.Single3:
case SCBlockType.Single4:
case SCBlockType.Single5:
case SCBlockType.Single6:
case SCBlockType.Single7:
case SCBlockType.Single8:
case SCBlockType.Single9:
case SCBlockType.Single10:
{
var entry_size = GetArrayEntrySize(block.Type);
block.Data = block.CryptBytes(data, offset, 1, entry_size);
offset += 1 + entry_size;
break;
}
default:
throw new ArgumentException(nameof(block.Type));
}
return block;
}
}
///
/// Block type for a .
///
[System.Diagnostics.CodeAnalysis.SuppressMessage("Design", "CA1027:Mark enums with FlagsAttribute", Justification = "NOT FLAGS")]
public enum SCBlockType
{
None = 0,
// All aliases of each other
Common1 = 1,
Common2 = 2,
Common3 = 3,
Data = 4,
Array = 5,
Single1 = 8,
Single2 = 9,
Single3 = 10,
Single4 = 11,
Single5 = 12,
Single6 = 13,
Single7 = 14,
Single8 = 15,
Single9 = 16,
Single10 = 17,
}
}