In this pull request I've changed a ton of method signatures to reflect the more-narrow types of Species, Move# and Form; additionally, I've narrowed other large collections that stored lists of species / permitted values, and reworked them to be more performant with the latest API spaghetti that PKHeX provides. Roamer met locations, usually in a range of [max-min]<64, can be quickly checked using a bitflag operation on a UInt64. Other collections (like "Is this from Colosseum or XD") were eliminated -- shadow state is not transferred COLO<->XD, so having a Shadow ID or matching the met location from a gift/wild encounter is a sufficient check for "originated in XD".
`Moveset` struct stores 4 moves, and exposes methods to interact with a moveset.
`IndividualValueSet` stores a 6 IV template (signed).
Performance impact:
* Less allocating on the heap: Moves - (8 bytes member ptr, 20 bytes heap->8 bytes member)
* Less allocating on the heap: IVs - (8 bytes member ptr, 28 bytes heap->8 bytes member)
* No heap pointers, no need to jump to grab data.
* Easy to inline logic for checking if moves are present (no linq usage with temporary collections).
End result is faster ctor times, less memory used, faster program.
Rewrites a good amount of legality APIs pertaining to:
* Legal moves that can be learned
* Evolution chains & cross-generation paths
* Memory validation with forgotten moves
In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data.
The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space.
The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation.
* `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game.
* `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`).
* Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
was checking stale value
make loop max adjustable by caller; knowingly requesting squares is 1:65,536, so a higher loop count than 50k might guarantee more successes.
Maybe in the future we'd have separate algorithms to pre-choose seeds by choosing a PID and unrolling -> rolling.
Co-Authored-By: Kermalis <29823718+Kermalis@users.noreply.github.com>
ShowdownSet: Lessen allocation
MoveTutor: Remove boxing by calling the generic method instead of object method
Xoro8b: Add more xmldoc, use positive constant instead of inverse negative for parity
StadiumUtil: Use built-in endianness reversal methods
Many years ago, PKX used to be a >4,000 line bloated file, which spun off multiple classes like CommonEdits and most of the early non-GUI PKM related logic. Now, it's just a stub to source the latest generation & personal table.
Separate files = more concise info, and more room to grow to do more advanced things.
Makes the IsPresent methods public (no longer internal).
Single underscore discards (one of the c# language revisions allowed reusing the single underscore discard).
Remove a temporary allocation in BDSP flag editor
Instantiating from template now follows group seed -> spawn 1 correlation, including alpha move.
Differentiates static encounters that don't follow the ow8a correlation, scrambles EC to disassociate.
Adds rand64 to get initial seeds
Set correct level range to match slotSeed; not respecting the slot roll being valid, but whatever.
Adds structures to read/write saved spawner data such as seeds, counts.
Adds generator and validator to emulate the FixInitSpec builder used by the game logic
Similar to SW/SH raids, validating these in-process is not feasible due to the number crunching required.
This does not handle the encounter slot call or the follow-up level range call. Just the inner FixInitSpec ctor & fill.
level is calc'd:
randFloat(sum) -> slot float
rand.Next() -> gen_seed (for all the details)
rand.NextInt(delta) +min -> level
Co-Authored-By: Lusamine <30205550+Lusamine@users.noreply.github.com>
Existing `get`/`set` logic is flawed in that it doesn't work on Big Endian operating systems, and it allocates heap objects when it doesn't need to.
`System.Buffers.Binary.BinaryPrimitives` in the `System.Memory` NuGet package provides both Little Endian and Big Endian methods to read and write data; all the `get`/`set` operations have been reworked to use this new API. This removes the need for PKHeX's manual `BigEndian` class, as all functions are already covered by the BinaryPrimitives API.
The `StringConverter` has now been rewritten to accept a Span to read from & write to, no longer requiring a temporary StringBuilder.
Other Fixes included:
- The Super Training UI for Gen6 has been reworked according to the latest block structure additions.
- Cloning a Stadium2 Save File now works correctly (opening from the Folder browser list).
- Checksum & Sanity properties removed from parent PKM class, and is now implemented via interface.