PKHeX/PKHeX.Core/Legality/RNG/RNG.cs

217 lines
9.6 KiB
C#
Raw Normal View History

using System.Collections.Generic;
using System.Runtime.CompilerServices;
namespace PKHeX.Core
{
public class RNG
{
public static readonly RNG LCRNG = new RNG(0x41C64E6D, 0x00006073, 0xEEB9EB65, 0x0A3561A1);
public static readonly RNG XDRNG = new RNG(0x000343FD, 0x00269EC3, 0xB9B33155, 0xA170F641);
public static readonly RNG ARNG = new RNG(0x6C078965, 0x00000001, 0x9638806D, 0x69C77F93);
private readonly uint Mult, Add, rMult, rAdd;
// Bruteforce cache for searching seeds
private const int cacheSize = 1 << 16;
// 1,2 (no gap)
private readonly uint k2; // Mult<<8
private readonly byte[] low8 = new byte[cacheSize];
private readonly bool[] flags = new bool[cacheSize];
// 1,3 (single gap)
private readonly uint k0g; // Mult*Mult
private readonly uint k2s; // Mult*Mult<<8
private readonly byte[] g_low8 = new byte[cacheSize];
private readonly bool[] g_flags = new bool[cacheSize];
// Euclidean division approach
private readonly long t0; // Add - 0xFFFF
private readonly long t1; // 0xFFFF * ((long)Mult + 1)
private RNG(uint f_mult, uint f_add, uint r_mult, uint r_add)
{
Mult = f_mult;
Add = f_add;
rMult = r_mult;
rAdd = r_add;
// Set up bruteforce utility
k2 = Mult << 8;
k0g = Mult * Mult;
k2s = k0g << 8;
PopulateMeetMiddleArrays();
t0 = Add - 0xFFFF;
t1 = 0xFFFF * ((long) Mult + 1);
}
private void PopulateMeetMiddleArrays()
{
uint k4g = Add * (Mult + 1); // 1,3's multiplier
for (uint i = 0; i <= byte.MaxValue; i++)
{
SetFlagData(i, Mult, Add, flags, low8); // 1,2
SetFlagData(i, k0g, k4g, g_flags, g_low8); // 1,3
}
}
private static void SetFlagData(uint i, uint mult, uint add, bool[] f, byte[] v)
{
// the second rand() also has 16 bits that aren't known. It is a 16 bit value added to either side.
// to consider these bits and their impact, they can at most increment/decrement the result by 1.
// with the current calc setup, the search loop's calculated value may be -1 (loop does subtraction)
// since LCGs are linear (hence the name), there's no values in adjacent cells. (no collisions)
// if we mark the prior adjacent cell, we eliminate the need to check flags twice on each loop.
uint right = mult * i + add;
ushort val = (ushort) (right >> 16);
f[val] = true; v[val] = (byte)i;
--val;
f[val] = true; v[val] = (byte)i;
// now the search only has to access the flags array once per loop.
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public uint Next(uint seed) => seed * Mult + Add;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public uint Prev(uint seed) => seed * rMult + rAdd;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public uint Advance(uint seed, int frames)
{
for (int i = 0; i < frames; i++)
seed = Next(seed);
return seed;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public uint Reverse(uint seed, int frames)
{
for (int i = 0; i < frames; i++)
seed = Prev(seed);
return seed;
}
/// <summary>
/// Generates an IV for each RNG call using the top 5 bits of frame seeds.
/// </summary>
/// <param name="seed">RNG seed</param>
/// <returns>Array of 6 IVs</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal uint[] GetSequentialIVsUInt32(uint seed)
{
uint[] ivs = new uint[6];
for (int i = 0; i < 6; i++)
{
seed = Next(seed);
ivs[i] = seed >> 27;
}
return ivs;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal int[] GetSequentialIVsInt32(uint seed)
{
int[] ivs = new int[6];
for (int i = 0; i < 6; i++)
{
seed = Next(seed);
ivs[i] = (int)(seed >> 27);
}
return ivs;
}
/// <summary>
/// Gets the origin seeds for two successive 16 bit rand() calls using a meet-in-the-middle approach.
/// </summary>
/// <param name="first">First rand() call, 16 bits, already shifted left 16 bits.</param>
/// <param name="second">Second rand() call, 16 bits, already shifted left 16 bits.</param>
/// <remarks>
/// Use a meet-in-the-middle attack to reduce the search space to 2^8 instead of 2^16
/// flag/2^8 tables are precomputed and constant (unrelated to rand pairs)
/// https://crypto.stackexchange.com/a/10609
/// </remarks>
/// <returns>Possible origin seeds that generate the 2 random numbers</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal IEnumerable<uint> RecoverLower16Bits(uint first, uint second)
{
uint k1 = second - first * Mult;
for (uint i = 0, k3 = k1; i <= 255; ++i, k3 -= k2)
{
ushort val = (ushort)(k3 >> 16);
if (flags[val])
yield return Prev(first | i << 8 | low8[val]);
}
}
/// <summary>
/// Gets the origin seeds for two 16 bit rand() calls (ignoring a rand() in between) using a meet-in-the-middle approach.
/// </summary>
/// <param name="first">First rand() call, 16 bits, already shifted left 16 bits.</param>
/// <param name="third">Third rand() call, 16 bits, already shifted left 16 bits.</param>
/// <remarks>
/// Use a meet-in-the-middle attack to reduce the search space to 2^8 instead of 2^16
/// flag/2^8 tables are precomputed and constant (unrelated to rand pairs)
/// https://crypto.stackexchange.com/a/10609
/// </remarks>
/// <returns>Possible origin seeds that generate the 2 random numbers</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal IEnumerable<uint> RecoverLower16BitsGap(uint first, uint third)
{
uint k1 = third - first * k0g;
for (uint i = 0, k3 = k1; i <= 255; ++i, k3 -= k2s)
{
ushort val = (ushort)(k3 >> 16);
if (g_flags[val])
yield return Prev(first | i << 8 | g_low8[val]);
}
}
/// <summary>
/// Gets the origin seeds for two successive 16 bit rand() calls using a Euclidean division approach.
/// </summary>
/// <param name="first">First rand() call, 16 bits, already shifted left 16 bits.</param>
/// <param name="second">Second rand() call, 16 bits, already shifted left 16 bits.</param>
/// <remarks>
/// For favorable multiplier values, this k_max gives a search space less than 2^8 (meet-in-the-middle)
/// For the programmed methods in this program, it is only advantageous to use this with <see cref="XDRNG"/>.
/// https://crypto.stackexchange.com/a/10629
/// </remarks>
/// <returns>Possible origin seeds that generate the 2 random numbers</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal IEnumerable<uint> RecoverLower16BitsEuclid16(uint first, uint second)
{
const int bitshift = 32;
const long inc = 0x100000000; // 1 << 32;
return GetPossibleSeedsEuclid(first, second, bitshift, inc);
}
/// <summary>
/// Gets the origin seeds for two successive 15 bit rand() calls using a Euclidean division approach.
/// </summary>
/// <param name="first">First rand() call, 15 bits, already shifted left 16 bits.</param>
/// <param name="second">Second rand() call, 15 bits, already shifted left 16 bits.</param>
/// <remarks>
/// Calculate the quotient of the Euclidean division (k_max) attack to reduce the search space.
/// For favorable multiplier values, this k_max gives a search space less than 2^8 (meet-in-the-middle)
/// For the programmed methods in this program, it is only advantageous to use this with <see cref="XDRNG"/>.
/// https://crypto.stackexchange.com/a/10629
/// </remarks>
/// <returns>Possible origin seeds that generate the 2 random numbers</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal IEnumerable<uint> RecoverLower16BitsEuclid15(uint first, uint second)
{
const int bitshift = 31;
2017-08-06 03:25:20 +00:00
const long inc = 0x080000000; // 1 << 31;
return GetPossibleSeedsEuclid(first, second, bitshift, inc);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private IEnumerable<uint> GetPossibleSeedsEuclid(uint first, uint second, int bitshift, long inc)
{
long t = second - Mult * first - t0;
long kmax = (((t1 - t) >> bitshift) << bitshift) + t;
for (long k = t; k <= kmax; k += inc)
{
// compute modulo in steps for reuse in yielded value (x % Mult)
long fix = k / Mult;
long remainder = k - Mult * fix;
if (remainder >> 16 == 0)
yield return Prev(first | (uint) fix);
}
}
}
}