PKHeX/PKHeX.Core/Legality/Encounters/VerifyCurrentMoves.cs

828 lines
43 KiB
C#
Raw Normal View History

Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
using System;
using System.Collections.Generic;
using System.Linq;
using static PKHeX.Core.LegalityCheckStrings;
using static PKHeX.Core.LegalityAnalysis;
namespace PKHeX.Core
{
/// <summary>
/// Logic to verify the current <see cref="PKM.Moves"/>.
/// </summary>
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
public static class VerifyCurrentMoves
{
public static CheckMoveResult[] VerifyMoves(PKM pkm, LegalInfo info, GameVersion game = GameVersion.Any)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
int[] Moves = pkm.Moves;
var res = ParseMovesForEncounters(pkm, info, game, Moves);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Duplicate Moves Check
VerifyNoEmptyDuplicates(Moves, res);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (Moves[0] == 0) // Can't have an empty moveslot for the first move.
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
res[0] = new CheckMoveResult(res[0], Severity.Invalid, V167, CheckIdentifier.Move);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return res;
}
private static CheckMoveResult[] ParseMovesForEncounters(PKM pkm, LegalInfo info, GameVersion game, int[] Moves)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (pkm.Species == 235) // special handling for Smeargle
return ParseMovesForSmeargle(pkm, Moves, info); // Smeargle can have any moves except a few
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Iterate over encounters
bool pre3DS = info.Generation < 6;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// gather valid moves for encounter species
info.EncounterMoves = new ValidEncounterMoves(pkm, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (info.Generation <= 3)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
pkm.WasEgg = info.EncounterMatch.EggEncounter;
var EncounterMatchGen = info.EncounterMatch as IGeneration;
var defaultG1LevelMoves = info.EncounterMoves.LevelUpMoves[1];
var defaultG2LevelMoves = pkm.InhabitedGeneration(2) ? info.EncounterMoves.LevelUpMoves[2] : null;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var defaultTradeback = pkm.TradebackStatus;
if (EncounterMatchGen != null)
{
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Generation 1 can have different minimum level in different encounter of the same species; update valid level moves
UptateGen1LevelUpMoves(pkm, info.EncounterMoves, info.EncounterMoves.MinimumLevelGen1, EncounterMatchGen.Generation, info);
// The same for Generation 2; if move reminder from Stadium 2 is not allowed
if (!Legal.AllowGen2MoveReminder(pkm) && pkm.InhabitedGeneration(2))
UptateGen2LevelUpMoves(pkm, info.EncounterMoves, info.EncounterMoves.MinimumLevelGen2, EncounterMatchGen.Generation, info);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var res = pre3DS
? ParseMovesPre3DS(pkm, Moves, info)
: ParseMoves3DS(pkm, Moves, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (res.All(x => x.Valid))
return res;
if (EncounterMatchGen?.Generation == 1 || EncounterMatchGen?.Generation == 2) // not valid, restore generation 1 and 2 moves
{
info.EncounterMoves.LevelUpMoves[1] = defaultG1LevelMoves;
if (pkm.InhabitedGeneration(2))
info.EncounterMoves.LevelUpMoves[2] = defaultG2LevelMoves;
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
pkm.TradebackStatus = defaultTradeback;
return res;
}
private static CheckMoveResult[] ParseMovesForSmeargle(PKM pkm, int[] Moves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (!pkm.IsEgg)
return ParseMovesSketch(pkm, Moves);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// can only know sketch as egg
var levelup = Legal.GetValidMovesAllGens(pkm, info.EvoChainsAllGens, minLvLG1: 1, Tutor: false, Machine: false, RemoveTransferHM: false);
info.EncounterMoves = new ValidEncounterMoves(levelup);
var source = new MoveParseSource { CurrentMoves = pkm.Moves, };
return ParseMoves(pkm, source, info);
}
private static CheckMoveResult[] ParseMovesIsEggPreRelearn(PKM pkm, int[] Moves, int[] SpecialMoves, EncounterEgg e)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
EggInfoSource infoset = new EggInfoSource(pkm, SpecialMoves, e);
return VerifyPreRelearnEggBase(pkm, Moves, infoset);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static CheckMoveResult[] ParseMovesWasEggPreRelearn(PKM pkm, int[] Moves, LegalInfo info, EncounterEgg e)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var EventEggMoves = GetSpecialMoves(info.EncounterMatch);
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
// Level up moves could not be inherited if Ditto is parent,
// that means genderless species and male only species except Nidoran and Volbeat (they breed with female nidoran and illumise) could not have level up moves as an egg
var AllowLevelUp = pkm.PersonalInfo.Gender > 0 && pkm.PersonalInfo.Gender < 255 || Legal.MixedGenderBreeding.Contains(e.Species);
int BaseLevel = AllowLevelUp ? 100 : e.LevelMin;
var LevelUp = Legal.GetBaseEggMoves(pkm, e.Species, e.Game, BaseLevel);
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
var TradebackPreevo = pkm.Format == 2 && info.EncounterMatch.Species > 151;
var NonTradebackLvlMoves = new int[0];
if (TradebackPreevo)
NonTradebackLvlMoves = Legal.GetExclusivePreEvolutionMoves(pkm, info.EncounterMatch.Species, info.EvoChainsAllGens[2], 2, e.Game).Where(m => m > Legal.MaxMoveID_1).ToArray();
var Egg = Legal.GetEggMoves(pkm, e.Species, pkm.AltForm, e.Game);
if (info.Generation < 3 && pkm.Format >= 7 && pkm.VC1)
Egg = Egg.Where(m => m <= Legal.MaxMoveID_1).ToArray();
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
bool volt = (info.Generation > 3 || e.Game == GameVersion.E) && Legal.LightBall.Contains(pkm.Species);
var Special = volt && EventEggMoves.Length == 0 ? new[] { 344 } : new int[0]; // Volt Tackle for bred Pichu line
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var source = new MoveParseSource
{
CurrentMoves = Moves,
SpecialSource = Special,
NonTradeBackLevelUpMoves = NonTradebackLvlMoves,
EggLevelUpSource = LevelUp,
EggMoveSource = Egg,
EggEventSource = EventEggMoves,
};
return ParseMoves(pkm, source, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static CheckMoveResult[] ParseMovesSketch(PKM pkm, int[] Moves)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
CheckMoveResult[] res = new CheckMoveResult[4];
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
for (int i = 0; i < 4; i++)
res[i] = Legal.InvalidSketch.Contains(Moves[i])
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
? new CheckMoveResult(MoveSource.Unknown, pkm.Format, Severity.Invalid, V166, CheckIdentifier.Move)
: new CheckMoveResult(MoveSource.Sketch, pkm.Format, CheckIdentifier.Move);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return res;
}
private static CheckMoveResult[] ParseMoves3DS(PKM pkm, int[] Moves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
info.EncounterMoves.Relearn = info.Generation >= 6 ? pkm.RelearnMoves : new int[0];
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (info.EncounterMatch is IMoveset)
return ParseMovesSpecialMoveset(pkm, Moves, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Everything else
return ParseMovesRelearn(pkm, Moves, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static CheckMoveResult[] ParseMovesPre3DS(PKM pkm, int[] Moves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (pkm.IsEgg && info.EncounterMatch is EncounterEgg egg)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
int[] SpecialMoves = GetSpecialMoves(info.EncounterMatch);
return ParseMovesIsEggPreRelearn(pkm, Moves, SpecialMoves, egg);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
var NoMoveReminder = (info.EncounterMatch as IGeneration)?.Generation == 1 || (info.EncounterMatch as IGeneration)?.Generation == 2 && !Legal.AllowGen2MoveReminder(pkm);
if (info.Generation <= 2 && NoMoveReminder)
return ParseMovesGenGB(pkm, Moves, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (info.EncounterMatch is EncounterEgg e)
return ParseMovesWasEggPreRelearn(pkm, Moves, info, e);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return ParseMovesSpecialMoveset(pkm, Moves, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static CheckMoveResult[] ParseMovesGenGB(PKM pkm, int[] Moves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
CheckMoveResult[] res = new CheckMoveResult[4];
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var G1Encounter = info.EncounterMatch;
if (G1Encounter == null)
return ParseMovesSpecialMoveset(pkm, Moves, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var InitialMoves = new int[0];
int[] SpecialMoves = GetSpecialMoves(info.EncounterMatch);
IEnumerable<GameVersion> games = (info.EncounterMatch as IGeneration)?.Generation == 1 ? Legal.GetGen1Versions(info) : Legal.GetGen2Versions(info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
foreach (GameVersion ver in games)
{
var VerInitialMoves = Legal.GetInitialMovesGBEncounter(G1Encounter.Species, G1Encounter.LevelMin, ver).ToArray();
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (VerInitialMoves.SequenceEqual(InitialMoves))
return res;
var source = new MoveParseSource
{
CurrentMoves = Moves,
SpecialSource = SpecialMoves,
Base = VerInitialMoves,
};
res = ParseMoves(pkm, source, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (res.All(r => r.Valid))
return res;
InitialMoves = VerInitialMoves;
}
return res;
}
private static CheckMoveResult[] ParseMovesSpecialMoveset(PKM pkm, int[] Moves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var source = new MoveParseSource
{
CurrentMoves = Moves,
SpecialSource = GetSpecialMoves(info.EncounterMatch),
};
return ParseMoves(pkm, source, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static int[] GetSpecialMoves(IEncounterable EncounterMatch)
{
switch (EncounterMatch)
{
case IMoveset mg:
return mg.Moves ?? new int[0];
case EncounterSlot s when s.Type == SlotType.Swarm && (s.Species == 273 || s.Species == 274):
return new[] {73}; // Leech Seed for RSE Swarm (Seedot || Nuzleaf); only matches for RSE origin encounters.
}
return new int[0];
}
private static CheckMoveResult[] ParseMovesRelearn(PKM pkm, int[] Moves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var source = new MoveParseSource
{
CurrentMoves = Moves,
SpecialSource = GetSpecialMoves(info.EncounterMatch),
};
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
2017-09-04 20:48:10 +00:00
if (info.EncounterMatch is EncounterEgg e)
source.EggMoveSource = Legal.GetEggMoves(pkm, e.Species, pkm.AltForm, e.Game);
CheckMoveResult[] res = ParseMoves(pkm, source, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
int[] RelearnMoves = pkm.RelearnMoves;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
for (int i = 0; i < 4; i++)
if ((pkm.IsEgg || res[i].Flag) && !RelearnMoves.Contains(Moves[i]))
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
res[i] = new CheckMoveResult(res[i], Severity.Invalid, string.Format(V170, res[i].Comment), res[i].Identifier);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return res;
}
private static CheckMoveResult[] ParseMoves(PKM pkm, MoveParseSource source, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
CheckMoveResult[] res = new CheckMoveResult[4];
bool AllParsed() => res.All(r => r != null);
var required = Legal.GetRequiredMoveCount(pkm, source.CurrentMoves, info, source.Base);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Check empty moves and relearn moves before generation specific moves
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
for (int m = 0; m < 4; m++)
{
if (source.CurrentMoves[m] == 0)
res[m] = new CheckMoveResult(MoveSource.None, pkm.Format, m < required ? Severity.Fishy : Severity.Valid, V167, CheckIdentifier.Move);
else if (info.EncounterMoves.Relearn.Contains(source.CurrentMoves[m]))
res[m] = new CheckMoveResult(MoveSource.Relearn, info.Generation, Severity.Valid, V172, CheckIdentifier.Move) { Flag = true };
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
if (AllParsed())
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return res;
// Encapsulate arguments to simplify method calls
var moveInfo = new LearnInfo(pkm) { Source = source };
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Check moves going backwards, marking the move valid in the most current generation when it can be learned
int[] generations = GetGenMovesCheckOrder(pkm);
if (pkm.Format <= 2)
generations = generations.Where(z => z < info.EncounterMoves.LevelUpMoves.Length).ToArray();
int lastgen = generations.LastOrDefault();
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
foreach (var gen in generations)
{
ParseMovesByGeneration(pkm, res, gen, info, moveInfo, lastgen);
if (AllParsed())
return res;
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (pkm.Species == 292 && info.EncounterMatch.Species != 292)
{
// Ignore Shedinja if the Encounter was also a Shedinja, assume null Encounter as a Nincada egg
// Check Shedinja evolved moves from Ninjask after egg moves
// Those moves could also be inherited egg moves
ParseShedinjaEvolveMoves(pkm, res, source.CurrentMoves);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
for (int m = 0; m < 4; m++)
{
if (res[m] == null)
res[m] = new CheckMoveResult(MoveSource.Unknown, info.Generation, Severity.Invalid, V176, CheckIdentifier.Move);
}
return res;
}
private static void ParseMovesByGeneration(PKM pkm, CheckMoveResult[] res, int gen, LegalInfo info, LearnInfo learnInfo, int last)
{
GetHMCompatibility(pkm, learnInfo.Source.CurrentMoves, gen, res, out bool[] HMLearned, out bool KnowDefogWhirlpool);
ParseMovesByGeneration(pkm, res, gen, info, learnInfo);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (gen == last)
ParseMovesByGenerationLast(pkm, res, gen, learnInfo);
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
switch (gen)
{
case 3:
case 4:
if (pkm.Format > gen)
FlagIncompatibleTransferHMs(res, learnInfo.Source.CurrentMoves, gen, HMLearned, KnowDefogWhirlpool);
break;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
case 1:
case 2:
ParseMovesByGeneration12(pkm, res, learnInfo.Source.CurrentMoves, gen, info, learnInfo);
break;
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Pokemon that evolved by leveling up while learning a specific move
// This pokemon could only have 3 moves from preevolutions that are not the move used to evolved
// including special and eggs moves before realearn generations
if (Legal.SpeciesEvolutionWithMove.Contains(pkm.Species))
ParseEvolutionLevelupMove(pkm, res, learnInfo.Source.CurrentMoves, learnInfo.IncenseMoves, info);
}
private static void ParseMovesByGeneration(PKM pkm, CheckMoveResult[] res, int gen, LegalInfo info, LearnInfo learnInfo)
{
var moves = learnInfo.Source.CurrentMoves;
bool native = gen == pkm.Format;
for (int m = 0; m < 4; m++)
{
if (IsCheckValid(res[m])) // already validated with another generation
continue;
int move = moves[m];
if (move == 0)
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (gen <= 2 && learnInfo.Source.Base.Contains(move))
res[m] = new CheckMoveResult(MoveSource.Initial, gen, Severity.Valid, native ? V361 : string.Format(V362, gen), CheckIdentifier.Move);
if (gen == 2 && !native && move > Legal.MaxMoveID_1 && pkm.VC1)
res[m] = new CheckMoveResult(MoveSource.Unknown, gen, Severity.Invalid, V176, CheckIdentifier.Move);
else if (info.EncounterMoves.LevelUpMoves[gen].Contains(move))
res[m] = new CheckMoveResult(MoveSource.LevelUp, gen, Severity.Valid, native ? V177 : string.Format(V330, gen), CheckIdentifier.Move);
else if (info.EncounterMoves.TMHMMoves[gen].Contains(move))
res[m] = new CheckMoveResult(MoveSource.TMHM, gen, Severity.Valid, native ? V173 : string.Format(V331, gen), CheckIdentifier.Move);
else if (info.EncounterMoves.TutorMoves[gen].Contains(move))
res[m] = new CheckMoveResult(MoveSource.Tutor, gen, Severity.Valid, native ? V174 : string.Format(V332, gen), CheckIdentifier.Move);
else if (gen == info.Generation && learnInfo.Source.SpecialSource.Contains(move))
res[m] = new CheckMoveResult(MoveSource.Special, gen, Severity.Valid, V175, CheckIdentifier.Move);
if (res[m] == null || gen >= 3)
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (res[m].Valid && gen == 2 && learnInfo.Source.NonTradeBackLevelUpMoves.Contains(m))
learnInfo.Gen2PreevoMoves.Add(m);
if (res[m].Valid && gen == 1)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
learnInfo.Gen1Moves.Add(m);
if (learnInfo.Gen2PreevoMoves.Any())
learnInfo.MixedGen12NonTradeback = true;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
if (res[m].Valid && gen <= 2 && pkm.TradebackStatus == TradebackType.Any && info.Generation != gen)
pkm.TradebackStatus = TradebackType.WasTradeback;
}
}
private static void ParseMovesByGeneration12(PKM pkm, CheckMoveResult[] res, int[] moves, int gen, LegalInfo info, LearnInfo learnInfo)
{
// Mark the gen 1 exclusive moves as illegal because the pokemon also have Non tradeback egg moves.
if (learnInfo.MixedGen12NonTradeback)
{
foreach (int m in learnInfo.Gen1Moves)
res[m] = new CheckMoveResult(res[m], Severity.Invalid, V335, CheckIdentifier.Move);
foreach (int m in learnInfo.Gen2PreevoMoves)
res[m] = new CheckMoveResult(res[m], Severity.Invalid, V412, CheckIdentifier.Move);
}
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
if (gen == 1 && pkm.Format == 1 && pkm.Gen1_NotTradeback)
{
ParseRedYellowIncompatibleMoves(pkm, res, moves);
ParseEvolutionsIncompatibleMoves(pkm, res, moves, info.EncounterMoves.TMHMMoves[1]);
}
}
private static void ParseMovesByGenerationLast(PKM pkm, CheckMoveResult[] res, int gen, LearnInfo learnInfo)
{
ParseEggMovesInherited(pkm, res, gen, learnInfo);
ParseEggMoves(pkm, res, gen, learnInfo);
ParseEggMovesRemaining(pkm, res, learnInfo);
}
private static void ParseEggMovesInherited(PKM pkm, CheckMoveResult[] res, int gen, LearnInfo learnInfo)
{
var moves = learnInfo.Source.CurrentMoves;
// Check higher-level moves after all the moves but just before egg moves to differentiate it from normal level up moves
// Also check if the base egg moves is a non tradeback move
for (int m = 0; m < 4; m++)
{
if (res[m]?.Valid ?? false) // Skip valid move
continue;
if (moves[m] == 0)
continue;
if (!learnInfo.Source.EggLevelUpSource.Contains(moves[m])) // Check if contains level-up egg moves from parents
continue;
if (learnInfo.IsGen2Pkm && learnInfo.Gen1Moves.Any() && moves[m] > Legal.MaxMoveID_1)
{
res[m] = new CheckMoveResult(MoveSource.InheritLevelUp, gen, Severity.Invalid, V334, CheckIdentifier.Move);
learnInfo.MixedGen12NonTradeback = true;
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
}
else
res[m] = new CheckMoveResult(MoveSource.InheritLevelUp, gen, Severity.Valid, V345, CheckIdentifier.Move);
learnInfo.LevelUpEggMoves.Add(m);
if (pkm.TradebackStatus == TradebackType.Any && pkm.GenNumber == 1)
pkm.TradebackStatus = TradebackType.WasTradeback;
}
}
private static void ParseEggMoves(PKM pkm, CheckMoveResult[] res, int gen, LearnInfo learnInfo)
{
var moves = learnInfo.Source.CurrentMoves;
// Check egg moves after all the generations and all the moves, every move that can't be learned in another source should have preference
// the moves that can only be learned from egg moves should in the future check if the move combinations can be breed in gens 2 to 5
for (int m = 0; m < 4; m++)
{
if (IsCheckValid(res[m]))
continue;
if (moves[m] == 0)
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (learnInfo.Source.EggMoveSource.Contains(moves[m]))
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// To learn exclusive generation 1 moves the pokemon was tradeback, but it can't be trade to generation 1
// without removing moves above MaxMoveID_1, egg moves above MaxMoveID_1 and gen 1 moves are incompatible
if (learnInfo.IsGen2Pkm && learnInfo.Gen1Moves.Any() && moves[m] > Legal.MaxMoveID_1)
{
res[m] = new CheckMoveResult(MoveSource.EggMove, gen, Severity.Invalid, V334, CheckIdentifier.Move) { Flag = true };
learnInfo.MixedGen12NonTradeback = true;
}
else
res[m] = new CheckMoveResult(MoveSource.EggMove, gen, Severity.Valid, V171, CheckIdentifier.Move) { Flag = true };
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
learnInfo.EggMovesLearned.Add(m);
if (pkm.TradebackStatus == TradebackType.Any && pkm.GenNumber == 1)
pkm.TradebackStatus = TradebackType.WasTradeback;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
if (!learnInfo.Source.EggEventSource.Contains(moves[m]))
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (!learnInfo.Source.EggMoveSource.Contains(moves[m]))
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (learnInfo.IsGen2Pkm && learnInfo.Gen1Moves.Any() && moves[m] > Legal.MaxMoveID_1)
{
res[m] = new CheckMoveResult(MoveSource.SpecialEgg, gen, Severity.Invalid, V334, CheckIdentifier.Move) { Flag = true };
learnInfo.MixedGen12NonTradeback = true;
}
else
res[m] = new CheckMoveResult(MoveSource.SpecialEgg, gen, Severity.Valid, V333, CheckIdentifier.Move) { Flag = true };
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
if (pkm.TradebackStatus == TradebackType.Any && pkm.GenNumber == 1)
pkm.TradebackStatus = TradebackType.WasTradeback;
learnInfo.EventEggMoves.Add(m);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
private static void ParseEggMovesRemaining(PKM pkm, CheckMoveResult[] res, LearnInfo learnInfo)
{
// A pokemon could have normal egg moves and regular egg moves
// Only if all regular egg moves are event egg moves or all event egg moves are regular egg moves
var RegularEggMovesLearned = learnInfo.EggMovesLearned.Union(learnInfo.LevelUpEggMoves).ToList();
if (RegularEggMovesLearned.Any() && learnInfo.EventEggMoves.Any())
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Moves that are egg moves or event egg moves but not both
var IncompatibleEggMoves = RegularEggMovesLearned.Except(learnInfo.EventEggMoves).Union(learnInfo.EventEggMoves.Except(RegularEggMovesLearned)).ToList();
if (!IncompatibleEggMoves.Any())
return;
foreach (int m in IncompatibleEggMoves)
{
if (learnInfo.EventEggMoves.Contains(m) && !learnInfo.EggMovesLearned.Contains(m))
res[m] = new CheckMoveResult(res[m], Severity.Invalid, V337, CheckIdentifier.Move);
else if (!learnInfo.EventEggMoves.Contains(m) && learnInfo.EggMovesLearned.Contains(m))
res[m] = new CheckMoveResult(res[m], Severity.Invalid, V336, CheckIdentifier.Move);
else if (!learnInfo.EventEggMoves.Contains(m) && learnInfo.LevelUpEggMoves.Contains(m))
res[m] = new CheckMoveResult(res[m], Severity.Invalid, V358, CheckIdentifier.Move);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
// If there is no incompatibility with event egg check that there is no inherited move in gift eggs and event eggs
else if (RegularEggMovesLearned.Any() && (pkm.WasGiftEgg || pkm.WasEventEgg))
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
foreach (int m in RegularEggMovesLearned)
{
if (learnInfo.EggMovesLearned.Contains(m))
res[m] = new CheckMoveResult(res[m], Severity.Invalid, pkm.WasGiftEgg ? V377 : V341, CheckIdentifier.Move);
else if (learnInfo.LevelUpEggMoves.Contains(m))
res[m] = new CheckMoveResult(res[m], Severity.Invalid, pkm.WasGiftEgg ? V378 : V347, CheckIdentifier.Move);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
private static void ParseRedYellowIncompatibleMoves(PKM pkm, IList<CheckMoveResult> res, int[] moves)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Check moves that are learned at the same level in red/blue and yellow, these are illegal because there is no move reminder
// There are only two incompatibilites; there is no illegal combination in generation 2+.
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var incompatible = new List<int>();
switch (pkm.Species)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Vaporeon in Yellow learns Mist and Haze at level 42, Mist can only be larned if it levels up in the daycare
// Vaporeon in Red/Blue learns Acid Armor at level 42 and level 47 in Yellow
case 134 when pkm.CurrentLevel < 47 && moves.Contains(151):
if (moves.Contains(54))
incompatible.Add(54);
if (moves.Contains(114))
incompatible.Add(114);
if (incompatible.Any())
incompatible.Add(151);
break;
// Flareon in Yellow learns Smog at level 42
// Flareon in Red Blue learns Leer at level 42 and level 47 in Yellow
case 136 when pkm.CurrentLevel < 47 && moves.Contains(43) && moves.Contains(123):
incompatible.Add(43);
incompatible.Add(123);
break;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
for (int m = 0; m < 4; m++)
{
if (incompatible.Contains(moves[m]))
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
res[m] = new CheckMoveResult(res[m], Severity.Invalid, V363, CheckIdentifier.Move);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
private static void ParseEvolutionsIncompatibleMoves(PKM pkm, IList<CheckMoveResult> res, int[] moves, List<int> tmhm)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var species = SpeciesStrings;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var currentspecies = species[pkm.Species];
var previousspecies = string.Empty;
var incompatible_previous = new List<int>();
var incompatible_current = new List<int>();
if (pkm.Species == 34 && moves.Contains(31) && moves.Contains(37))
{
// Nidoking learns Thrash at level 23
// Nidorino learns Fury Attack at level 36, Nidoran♂ at level 30
// Other moves are either learned by Nidoran♂ up to level 23 or by TM
incompatible_current.Add(31);
incompatible_previous.Add(37);
previousspecies = species[33];
}
if (pkm.Species == 103 && moves.Contains(23) && moves.Any(m => Legal.G1Exeggcute_IncompatibleMoves.Contains(moves[m])))
{
// Exeggutor learns stomp at level 28
// Exeggcute learns Stun Spore at 32, PoisonPowder at 37 and Sleep Powder at 48
incompatible_current.Add(23);
incompatible_previous.AddRange(Legal.G1Exeggcute_IncompatibleMoves);
previousspecies = species[103];
}
if (134 <= pkm.Species && pkm.Species <= 136)
{
previousspecies = species[133];
var ExclusiveMoves = Legal.GetExclusiveMoves(133, pkm.Species, 1, tmhm, moves, pkm.Korean);
var EeveeLevels = Legal.GetMinLevelLearnMove(133, 1, ExclusiveMoves[0]);
var EvoLevels = Legal.GetMaxLevelLearnMove(pkm.Species, 1, ExclusiveMoves[1]);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
for (int i = 0; i < ExclusiveMoves[0].Count; i++)
{
// There is a evolution move with a lower level that current eevee move
if (EvoLevels.Any(ev => ev < EeveeLevels[i]))
incompatible_previous.Add(ExclusiveMoves[0][i]);
}
for (int i = 0; i < ExclusiveMoves[1].Count; i++)
{
// There is a eevee move with a greather level that current evolution move
if (EeveeLevels.Any(ev => ev > EvoLevels[i]))
incompatible_current.Add(ExclusiveMoves[1][i]);
}
}
for (int m = 0; m < 4; m++)
{
if (incompatible_current.Contains(moves[m]))
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
res[m] = new CheckMoveResult(res[m], Severity.Invalid, string.Format(V365, currentspecies, previousspecies), CheckIdentifier.Move);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (incompatible_previous.Contains(moves[m]))
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
res[m] = new CheckMoveResult(res[m], Severity.Invalid, string.Format(V366, currentspecies, previousspecies), CheckIdentifier.Move);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
private static void ParseShedinjaEvolveMoves(PKM pkm, IList<CheckMoveResult> res, int[] moves)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
List<int>[] ShedinjaEvoMoves = Legal.GetShedinjaEvolveMoves(pkm);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var ShedinjaEvoMovesLearned = new List<int>();
for (int gen = Math.Min(pkm.Format, 4); gen >= 3; gen--)
{
bool native = gen == pkm.Format;
for (int m = 0; m < 4; m++)
{
if (res[m]?.Valid ?? false)
continue;
if (!ShedinjaEvoMoves[gen].Contains(moves[m]))
continue;
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
res[m] = new CheckMoveResult(MoveSource.ShedinjaEvo, gen, Severity.Valid, native ? V355 : string.Format(V356, gen), CheckIdentifier.Move);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
ShedinjaEvoMovesLearned.Add(m);
}
}
if (ShedinjaEvoMovesLearned.Count <= 1)
return;
foreach (int m in ShedinjaEvoMovesLearned)
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
res[m] = new CheckMoveResult(res[m], Severity.Invalid, V357, CheckIdentifier.Move);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void ParseEvolutionLevelupMove(PKM pkm, IList<CheckMoveResult> res, int[] moves, List<int> IncenseMovesLearned, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Ignore if there is an invalid move or an empty move, this validation is only for 4 non-empty moves that are all valid, but invalid as a 4 combination
// Ignore Mr. Mime and Sudowodoo from generations 1 to 3, they cant be evolved from Bonsly or Munchlax
// Ignore if encounter species is the evolution species, the pokemon was not evolved by the player
if (!res.All(r => r?.Valid ?? false) || moves.Any(m => m == 0) ||
(Legal.BabyEvolutionWithMove.Contains(pkm.Species) && pkm.GenNumber <= 3) ||
info.EncounterMatch.Species == pkm.Species)
return;
var ValidMoves = Legal.GetValidPostEvolutionMoves(pkm, pkm.Species, info.EvoChainsAllGens, GameVersion.Any);
// Add the evolution moves to valid moves in case some of these moves could not be learned after evolving
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
switch (pkm.Species)
{
case 122: // Mr. Mime (Mime Jr with Mimic)
case 185: // Sudowoodo (Bonsly with Mimic)
ValidMoves.Add(102);
break;
case 424: // Ambipom (Aipom with Double Hit)
ValidMoves.Add(458);
break;
case 463: // Lickilicky (Lickitung with Rollout)
ValidMoves.Add(205);
break;
case 465: // Tangrowth (Tangela with Ancient Power)
case 469: // Yanmega (Yamma with Ancient Power)
case 473: // Mamoswine (Piloswine with Ancient Power)
ValidMoves.Add(246);
break;
case 700: // Sylveon (Eevee with Fairy Move)
// Add every fairy moves without cheking if eevee learn it or not, pokemon moves are determined legal before this function
ValidMoves.AddRange(Legal.FairyMoves);
break;
case 763: // Tsareena (Steenee with Stomp)
ValidMoves.Add(023);
break;
}
if (moves.Any(m => ValidMoves.Contains(m)))
return;
for (int m = 0; m < 4; m++)
res[m] = new CheckMoveResult(res[m], Severity.Invalid, string.Format(V385, SpeciesStrings[pkm.Species]), CheckIdentifier.Move);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void GetHMCompatibility(PKM pkm, int[] moves, int gen, IReadOnlyList<CheckResult> res, out bool[] HMLearned, out bool KnowDefogWhirlpool)
{
HMLearned = new bool[4];
// Check if pokemon knows HM moves from generation 3 and 4 but are not valid yet, that means it cant learn the HMs in future generations
if (gen == 4 && pkm.Format > 4)
{
IsHMSource(ref HMLearned, Legal.HM_4_RemovePokeTransfer);
KnowDefogWhirlpool = moves.Where((m, i) => IsDefogWhirl(m) && IsCheckInvalid(res[i])).Count() == 2;
return;
}
KnowDefogWhirlpool = false;
if (gen == 3 && pkm.Format > 3)
IsHMSource(ref HMLearned, Legal.HM_3);
void IsHMSource(ref bool[] flags, ICollection<int> source)
{
for (int i = 0; i < 4; i++)
flags[i] = IsCheckInvalid(res[i]) && source.Contains(moves[i]);
}
}
private static bool IsDefogWhirl(int move) => move == 250 || move == 432;
private static bool IsCheckInvalid(CheckResult chk) => !(chk?.Valid ?? false);
private static bool IsCheckValid(CheckResult chk) => chk?.Valid ?? false;
private static void FlagIncompatibleTransferHMs(CheckMoveResult[] res, int[] moves, int gen, bool[] HMLearned, bool KnowDefogWhirlpool)
{
// After all the moves from the generations 3 and 4,
// including egg moves if is the origin generation because some hidden moves are also special egg moves in gen 3
// Check if the marked hidden moves that were invalid at the start are now marked as valid, that means
// the hidden move was learned in gen 3 or 4 but was not removed when transfer to 4 or 5
if (KnowDefogWhirlpool)
{
int invalidCount = moves.Where((m, i) => IsDefogWhirl(m) && IsCheckValid(res[i])).Count();
if (invalidCount == 2) // can't know both at the same time
for (int i = 0; i < 4; i++) // flag both moves
if (IsDefogWhirl(moves[i]))
res[i] = new CheckMoveResult(res[i], Severity.Invalid, V338, CheckIdentifier.Move);
}
// Flag moves that are only legal when learned from a past-gen HM source
for (int i = 0; i < HMLearned.Length; i++)
if (HMLearned[i] && IsCheckValid(res[i]))
res[i] = new CheckMoveResult(res[i], Severity.Invalid, string.Format(V339, gen, gen + 1), CheckIdentifier.Move);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
/* Similar to verifyRelearnEgg but in pre relearn generation is the moves what should match the expected order but only if the pokemon is inside an egg */
private static CheckMoveResult[] VerifyPreRelearnEggBase(PKM pkm, int[] Moves, EggInfoSource infoset)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
CheckMoveResult[] res = new CheckMoveResult[4];
var gen = pkm.GenNumber;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Obtain level1 moves
2017-09-04 20:48:10 +00:00
var reqBase = GetRequiredBaseMoveCount(Moves, infoset);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var em = string.Empty;
// Check if the required amount of Base Egg Moves are present.
for (int i = 0; i < reqBase; i++)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (infoset.Base.Contains(Moves[i]))
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
res[i] = new CheckMoveResult(MoveSource.Initial, gen, Severity.Valid, V179, CheckIdentifier.Move);
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
// mark remaining base egg moves missing
for (int z = i; z < reqBase; z++)
res[z] = new CheckMoveResult(MoveSource.Initial, gen, Severity.Invalid, V180, CheckIdentifier.Move);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// provide the list of suggested base moves for the last required slot
em = string.Join(", ", getMoveNames(infoset.Base));
break;
}
int moveoffset = reqBase;
int endSpecial = moveoffset + infoset.Special.Count;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Check also if the required amount of Special Egg Moves are present, ir are after base moves
for (int i = moveoffset; i < endSpecial; i++)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (infoset.Special.Contains(Moves[i]))
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
res[i] = new CheckMoveResult(MoveSource.SpecialEgg, gen, Severity.Valid, V333, CheckIdentifier.Move);
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
// Not in special moves, mark remaining special egg moves missing
for (int z = i; z < endSpecial; z++)
res[z] = new CheckMoveResult(MoveSource.SpecialEgg, gen, Severity.Invalid, V342, CheckIdentifier.Move);
// provide the list of suggested base moves and species moves for the last required slot
if (string.IsNullOrEmpty(em))
em = string.Join(", ", getMoveNames(infoset.Base));
em += ", ";
em += string.Join(", ", getMoveNames(infoset.Special));
break;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
if (!string.IsNullOrEmpty(em))
res[reqBase > 0 ? reqBase - 1 : 0].Comment = string.Format(Environment.NewLine + V343, em);
// Inherited moves appear after the required base moves.
var AllowInheritedSeverity = infoset.AllowInherited ? Severity.Valid : Severity.Invalid;
for (int i = reqBase + infoset.Special.Count; i < 4; i++)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (Moves[i] == 0) // empty
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
res[i] = new CheckMoveResult(MoveSource.None, gen, Severity.Valid, V167, CheckIdentifier.Move);
else if (infoset.Egg.Contains(Moves[i])) // inherited egg move
res[i] = new CheckMoveResult(MoveSource.EggMove, gen, AllowInheritedSeverity, infoset.AllowInherited ? V344 : V341, CheckIdentifier.Move);
else if (infoset.LevelUp.Contains(Moves[i])) // inherited lvl moves
res[i] = new CheckMoveResult(MoveSource.InheritLevelUp, gen, AllowInheritedSeverity, infoset.AllowInherited ? V345 : V347, CheckIdentifier.Move);
else if (infoset.TMHM.Contains(Moves[i])) // inherited TMHM moves
res[i] = new CheckMoveResult(MoveSource.TMHM, gen, AllowInheritedSeverity, infoset.AllowInherited ? V349 : V350, CheckIdentifier.Move);
else if (infoset.Tutor.Contains(Moves[i])) // inherited tutor moves
res[i] = new CheckMoveResult(MoveSource.Tutor, gen, AllowInheritedSeverity, infoset.AllowInherited ? V346 : V348, CheckIdentifier.Move);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
else // not inheritable, flag
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
res[i] = new CheckMoveResult(MoveSource.Unknown, gen, Severity.Invalid, V340, CheckIdentifier.Move);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
return res;
}
2017-09-04 20:48:10 +00:00
private static int GetRequiredBaseMoveCount(int[] Moves, EggInfoSource infoset)
{
int baseCt = infoset.Base.Count;
if (baseCt > 4) baseCt = 4;
// Obtain Inherited moves
var inherited = Moves.Where(m => m != 0 && infoset.IsInherited(m)).ToList();
int inheritCt = inherited.Count;
// Get required amount of base moves
int unique = infoset.Base.Union(inherited).Count();
2017-09-04 20:48:10 +00:00
int reqBase = inheritCt == 4 || baseCt + inheritCt > 4 ? 4 - inheritCt : baseCt;
if (Moves.Count(m => m != 0) < Math.Min(4, infoset.Base.Count))
reqBase = Math.Min(4, unique);
return reqBase;
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
private static void VerifyNoEmptyDuplicates(int[] Moves, CheckMoveResult[] res)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
bool emptySlot = false;
for (int i = 0; i < 4; i++)
{
if (Moves[i] == 0)
emptySlot = true;
else if (emptySlot)
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
res[i] = new CheckMoveResult(res[i], Severity.Invalid, V167, res[i].Identifier);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
else if (Moves.Count(m => m == Moves[i]) > 1)
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
res[i] = new CheckMoveResult(res[i], Severity.Invalid, V168, res[i].Identifier);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
private static void UptateGen1LevelUpMoves(PKM pkm, ValidEncounterMoves EncounterMoves, int defaultLvlG1, int generation, LegalInfo info)
{
switch (generation)
{
case 1:
case 2:
var lvlG1 = info.EncounterMatch?.LevelMin + 1 ?? 6;
if (lvlG1 != defaultLvlG1)
EncounterMoves.LevelUpMoves[1] = Legal.GetValidMoves(pkm, info.EvoChainsAllGens[1], generation: 1, minLvLG1: lvlG1, LVL: true, Tutor: false, Machine: false, MoveReminder: false).ToList();
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
break;
}
}
private static void UptateGen2LevelUpMoves(PKM pkm, ValidEncounterMoves EncounterMoves, int defaultLvlG2, int generation, LegalInfo info)
{
switch (generation)
{
case 1:
case 2:
var lvlG2 = info.EncounterMatch?.LevelMin + 1 ?? 6;
if (lvlG2 != defaultLvlG2)
EncounterMoves.LevelUpMoves[2] = Legal.GetValidMoves(pkm, info.EvoChainsAllGens[2], generation: 2, minLvLG2: defaultLvlG2, LVL: true, Tutor: false, Machine: false, MoveReminder: false).ToList();
break;
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static int[] GetGenMovesCheckOrder(PKM pkm)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (pkm.Format < 3)
return GetGenMovesCheckOrderGB(pkm, pkm.Format);
if (pkm.VC)
return GetGenMovesOrderVC(pkm);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return GetGenMovesOrder(pkm.Format, pkm.GenNumber);
}
private static int[] GetGenMovesOrderVC(PKM pkm)
{
// VC case: check transfer games in reverse order (8, 7..) then past games.
int[] xfer = GetGenMovesOrder(pkm.Format, pkm.GenNumber);
int[] past = GetGenMovesCheckOrderGB(pkm, pkm.GenNumber);
int end = xfer.Length;
Array.Resize(ref xfer, xfer.Length + past.Length);
past.CopyTo(xfer, end);
return xfer;
}
private static int[] GetGenMovesCheckOrderGB(PKM pkm, int originalGeneration)
{
if (originalGeneration == 2)
return pkm.Korean ? new[] {2} : new[] {2, 1};
return new[] {1, 2}; // RBY
}
private static int[] GetGenMovesOrder(int start, int end)
{
if (start <= end)
return new[] {start};
var order = new int[start - end + 1];
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
for (int i = 0; i < order.Length; i++)
order[i] = start - i;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return order;
}
}
}