PKHeX/PKHeX.Core/MysteryGifts/WC7.cs

632 lines
25 KiB
C#
Raw Normal View History

Refactoring: Move Source (Legality) (#3560) Rewrites a good amount of legality APIs pertaining to: * Legal moves that can be learned * Evolution chains & cross-generation paths * Memory validation with forgotten moves In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data. The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space. The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation. * `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game. * `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`). * Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
using System;
using static System.Buffers.Binary.BinaryPrimitives;
namespace PKHeX.Core;
/// <summary>
/// Generation 7 Mystery Gift Template File
/// </summary>
public sealed class WC7 : DataMysteryGift, IRibbonSetEvent3, IRibbonSetEvent4, ILangNick, IContestStats, INature, IMemoryOT
{
public const int Size = 0x108;
public override int Generation => 7;
Refactoring: Move Source (Legality) (#3560) Rewrites a good amount of legality APIs pertaining to: * Legal moves that can be learned * Evolution chains & cross-generation paths * Memory validation with forgotten moves In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data. The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space. The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation. * `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game. * `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`). * Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
public override EntityContext Context => EntityContext.Gen7;
public WC7() : this(new byte[Size]) { }
public WC7(byte[] data) : base(data) { }
public int RestrictLanguage { get; set; } // None
public byte RestrictVersion { get; set; } // Permit All
public bool CanBeReceivedByVersion(int v)
{
if (v is < (int)GameVersion.SN or > (int)GameVersion.UM)
return false;
if (RestrictVersion == 0)
return true; // no data
var bitIndex = v - (int)GameVersion.SN;
var bit = 1 << bitIndex;
return (RestrictVersion & bit) != 0;
}
// General Card Properties
public override int CardID
{
get => ReadUInt16LittleEndian(Data.AsSpan(0));
set => WriteUInt16LittleEndian(Data.AsSpan(0), (ushort)value);
}
public override string CardTitle
{
// Max len 36 char, followed by null terminator
get => StringConverter7.GetString(Data.AsSpan(2, 0x4A));
set => StringConverter7.SetString(Data.AsSpan(2, 0x4A), value.AsSpan(), 36, Language, StringConverterOption.ClearZero);
}
internal uint RawDate
{
get => ReadUInt32LittleEndian(Data.AsSpan(0x4C));
set => WriteUInt32LittleEndian(Data.AsSpan(0x4C), value);
}
2018-05-12 15:13:39 +00:00
private uint Year
{
get => (RawDate / 10000) + 2000;
set => RawDate = SetDate(value, Month, Day);
}
private uint Month
{
get => RawDate % 10000 / 100;
set => RawDate = SetDate(Year, value, Day);
}
private uint Day
{
get => RawDate % 100;
set => RawDate = SetDate(Year, Month, value);
}
public static uint SetDate(uint year, uint month, uint day) => (Math.Max(0, year - 2000) * 10000) + (month * 100) + day;
/// <summary>
/// Gets or sets the date of the card.
/// </summary>
public DateTime? Date
{
get
{
// Check to see if date is valid
if (!DateUtil.IsDateValid(Year, Month, Day))
return null;
return new DateTime((int)Year, (int)Month, (int)Day);
}
set
{
if (value.HasValue)
{
// Only update the properties if a value is provided.
Year = (ushort)value.Value.Year;
Month = (byte)value.Value.Month;
Day = (byte)value.Value.Day;
}
else
{
// Clear the Met Date.
// If code tries to access MetDate again, null will be returned.
Year = 0;
Month = 0;
Day = 0;
}
}
}
public int CardLocation { get => Data[0x50]; set => Data[0x50] = (byte)value; }
public int CardType { get => Data[0x51]; set => Data[0x51] = (byte)value; }
public byte CardFlags { get => Data[0x52]; set => Data[0x52] = value; }
2018-05-12 15:13:39 +00:00
public bool GiftRepeatable { get => (CardFlags & 1) == 0; set => CardFlags = (byte)((CardFlags & ~1) | (value ? 0 : 1)); }
public override bool GiftUsed { get => (CardFlags & 2) == 2; set => CardFlags = (byte)((CardFlags & ~2) | (value ? 2 : 0)); }
public bool GiftOncePerDay { get => (CardFlags & 4) == 4; set => CardFlags = (byte)((CardFlags & ~4) | (value ? 4 : 0)); }
2017-01-05 22:45:53 +00:00
public bool MultiObtain { get => Data[0x53] == 1; set => Data[0x53] = value ? (byte)1 : (byte)0; }
2018-05-12 15:13:39 +00:00
// BP Properties
public bool IsBP { get => CardType == 3; set { if (value) CardType = 3; } }
public int BP { get => ItemID; set => ItemID = value; }
// Bean (Mame) Properties
public bool IsBean { get => CardType == 2; set { if (value) CardType = 2; } }
public int Bean { get => ItemID; set => ItemID = value; }
2017-01-06 06:34:22 +00:00
// Item Properties
public override bool IsItem { get => CardType == 1; set { if (value) CardType = 1; } }
public override int ItemID { get => ReadUInt16LittleEndian(Data.AsSpan(0x68)); set => WriteUInt16LittleEndian(Data.AsSpan(0x68), (ushort)value); }
public int GetItem(int index) => ReadUInt16LittleEndian(Data.AsSpan(0x68 + (0x4 * index)));
public void SetItem(int index, ushort item) => WriteUInt16LittleEndian(Data.AsSpan(0x68 + (4 * index)), item);
public int GetQuantity(int index) => ReadUInt16LittleEndian(Data.AsSpan(0x6A + (0x4 * index)));
public void SetQuantity(int index, ushort quantity) => WriteUInt16LittleEndian(Data.AsSpan(0x6A + (4 * index)), quantity);
public override int Quantity
{
get => ReadUInt16LittleEndian(Data.AsSpan(0x6A));
set => WriteUInt16LittleEndian(Data.AsSpan(0x6A), (ushort)value);
}
// Pokémon Properties
public override bool IsEntity { get => CardType == 0; set { if (value) CardType = 0; } }
public override bool IsShiny => Shiny.IsShiny();
public override Shiny Shiny => IsEgg ? Shiny.Random : PIDType switch
{
ShinyType6.FixedValue => GetShinyXor() switch
{
0 => Shiny.AlwaysSquare,
<= 15 => Shiny.AlwaysStar,
_ => Shiny.Never,
},
ShinyType6.Random => Shiny.Random,
ShinyType6.Never => Shiny.Never,
ShinyType6.Always => Shiny.Always,
_ => throw new ArgumentOutOfRangeException(),
};
private int GetShinyXor()
{
// Player owned anti-shiny fixed PID
if (TID == 0 && SID == 0)
return int.MaxValue;
var pid = PID;
var psv = (int)((pid >> 16) ^ (pid & 0xFFFF));
var tsv = (TID ^ SID);
return psv ^ tsv;
}
public override int TID
{
get => ReadUInt16LittleEndian(Data.AsSpan(0x68));
set => WriteUInt16LittleEndian(Data.AsSpan(0x68), (ushort)value);
}
public override int SID {
get => ReadUInt16LittleEndian(Data.AsSpan(0x6A));
set => WriteUInt16LittleEndian(Data.AsSpan(0x6A), (ushort)value);
}
public int OriginGame
{
get => Data[0x6C];
set => Data[0x6C] = (byte)value;
}
public uint EncryptionConstant {
get => ReadUInt32LittleEndian(Data.AsSpan(0x70));
set => WriteUInt32LittleEndian(Data.AsSpan(0x70), value);
}
public override int Ball
{
get => Data[0x76];
set => Data[0x76] = (byte)value; }
public override int HeldItem
{
get => ReadUInt16LittleEndian(Data.AsSpan(0x78));
set => WriteUInt16LittleEndian(Data.AsSpan(0x78), (ushort)value);
}
public ushort Move1 { get => ReadUInt16LittleEndian(Data.AsSpan(0x7A)); set => WriteUInt16LittleEndian(Data.AsSpan(0x7A), value); }
public ushort Move2 { get => ReadUInt16LittleEndian(Data.AsSpan(0x7C)); set => WriteUInt16LittleEndian(Data.AsSpan(0x7C), value); }
public ushort Move3 { get => ReadUInt16LittleEndian(Data.AsSpan(0x7E)); set => WriteUInt16LittleEndian(Data.AsSpan(0x7E), value); }
public ushort Move4 { get => ReadUInt16LittleEndian(Data.AsSpan(0x80)); set => WriteUInt16LittleEndian(Data.AsSpan(0x80), value); }
public override ushort Species { get => ReadUInt16LittleEndian(Data.AsSpan(0x82)); set => WriteUInt16LittleEndian(Data.AsSpan(0x82), value); }
public override byte Form { get => Data[0x84]; set => Data[0x84] = value; }
public int Language { get => Data[0x85]; set => Data[0x85] = (byte)value; }
public string Nickname
{
get => StringConverter7.GetString(Data.AsSpan(0x86, 0x1A));
set => StringConverter7.SetString(Data.AsSpan(0x86, 0x1A), value.AsSpan(), 12, Language, StringConverterOption.ClearZero);
}
public int Nature { get => (sbyte)Data[0xA0]; set => Data[0xA0] = (byte)value; }
public override int Gender { get => Data[0xA1]; set => Data[0xA1] = (byte)value; }
public override int AbilityType { get => Data[0xA2]; set => Data[0xA2] = (byte)value; }
public ShinyType6 PIDType { get => (ShinyType6)Data[0xA3]; set => Data[0xA3] = (byte)value; }
public override int EggLocation { get => ReadUInt16LittleEndian(Data.AsSpan(0xA4)); set => WriteUInt16LittleEndian(Data.AsSpan(0xA4), (ushort)value); }
public int MetLocation { get => ReadUInt16LittleEndian(Data.AsSpan(0xA6)); set => WriteUInt16LittleEndian(Data.AsSpan(0xA6), (ushort)value); }
public int MetLevel { get => Data[0xA8]; set => Data[0xA8] = (byte)value; }
public byte CNT_Cool { get => Data[0xA9]; set => Data[0xA9] = value; }
public byte CNT_Beauty { get => Data[0xAA]; set => Data[0xAA] = value; }
public byte CNT_Cute { get => Data[0xAB]; set => Data[0xAB] = value; }
public byte CNT_Smart { get => Data[0xAC]; set => Data[0xAC] = value; }
public byte CNT_Tough { get => Data[0xAD]; set => Data[0xAD] = value; }
public byte CNT_Sheen { get => Data[0xAE]; set => Data[0xAE] = value; }
public int IV_HP { get => Data[0xAF]; set => Data[0xAF] = (byte)value; }
public int IV_ATK { get => Data[0xB0]; set => Data[0xB0] = (byte)value; }
public int IV_DEF { get => Data[0xB1]; set => Data[0xB1] = (byte)value; }
public int IV_SPE { get => Data[0xB2]; set => Data[0xB2] = (byte)value; }
public int IV_SPA { get => Data[0xB3]; set => Data[0xB3] = (byte)value; }
public int IV_SPD { get => Data[0xB4]; set => Data[0xB4] = (byte)value; }
public int OTGender { get => Data[0xB5]; set => Data[0xB5] = (byte)value; }
public override string OT_Name
{
get => StringConverter7.GetString(Data.AsSpan(0xB6, 0x1A));
set => StringConverter7.SetString(Data.AsSpan(0xB6, 0x1A), value.AsSpan(), 12, Language, StringConverterOption.ClearZero);
}
public override byte Level { get => Data[0xD0]; set => Data[0xD0] = value; }
public override bool IsEgg { get => Data[0xD1] == 1; set => Data[0xD1] = value ? (byte)1 : (byte)0; }
public ushort AdditionalItem { get => ReadUInt16LittleEndian(Data.AsSpan(0xD2)); set => WriteUInt16LittleEndian(Data.AsSpan(0xD2), value); }
public uint PID { get => ReadUInt32LittleEndian(Data.AsSpan(0xD4)); set => WriteUInt32LittleEndian(Data.AsSpan(0xD4), value); }
public ushort RelearnMove1 { get => ReadUInt16LittleEndian(Data.AsSpan(0xD8)); set => WriteUInt16LittleEndian(Data.AsSpan(0xD8), value); }
public ushort RelearnMove2 { get => ReadUInt16LittleEndian(Data.AsSpan(0xDA)); set => WriteUInt16LittleEndian(Data.AsSpan(0xDA), value); }
public ushort RelearnMove3 { get => ReadUInt16LittleEndian(Data.AsSpan(0xDC)); set => WriteUInt16LittleEndian(Data.AsSpan(0xDC), value); }
public ushort RelearnMove4 { get => ReadUInt16LittleEndian(Data.AsSpan(0xDE)); set => WriteUInt16LittleEndian(Data.AsSpan(0xDE), value); }
public byte OT_Intensity { get => Data[0xE0]; set => Data[0xE0] = value; }
public byte OT_Memory { get => Data[0xE1]; set => Data[0xE1] = value; }
public ushort OT_TextVar { get => ReadUInt16LittleEndian(Data.AsSpan(0xE2)); set => WriteUInt16LittleEndian(Data.AsSpan(0xE2), value); }
public byte OT_Feeling { get => Data[0xE4]; set => Data[0xE4] = value; }
public int EV_HP { get => Data[0xE5]; set => Data[0xE5] = (byte)value; }
public int EV_ATK { get => Data[0xE6]; set => Data[0xE6] = (byte)value; }
public int EV_DEF { get => Data[0xE7]; set => Data[0xE7] = (byte)value; }
public int EV_SPE { get => Data[0xE8]; set => Data[0xE8] = (byte)value; }
public int EV_SPA { get => Data[0xE9]; set => Data[0xE9] = (byte)value; }
public int EV_SPD { get => Data[0xEA]; set => Data[0xEA] = (byte)value; }
private byte RIB0 { get => Data[0x74]; set => Data[0x74] = value; }
private byte RIB1 { get => Data[0x75]; set => Data[0x75] = value; }
public bool RibbonChampionBattle { get => (RIB0 & (1 << 0)) == 1 << 0; set => RIB0 = (byte)((RIB0 & ~(1 << 0)) | (value ? 1 << 0 : 0)); }
public bool RibbonChampionRegional { get => (RIB0 & (1 << 1)) == 1 << 1; set => RIB0 = (byte)((RIB0 & ~(1 << 1)) | (value ? 1 << 1 : 0)); }
public bool RibbonChampionNational { get => (RIB0 & (1 << 2)) == 1 << 2; set => RIB0 = (byte)((RIB0 & ~(1 << 2)) | (value ? 1 << 2 : 0)); }
public bool RibbonCountry { get => (RIB0 & (1 << 3)) == 1 << 3; set => RIB0 = (byte)((RIB0 & ~(1 << 3)) | (value ? 1 << 3 : 0)); }
public bool RibbonNational { get => (RIB0 & (1 << 4)) == 1 << 4; set => RIB0 = (byte)((RIB0 & ~(1 << 4)) | (value ? 1 << 4 : 0)); }
public bool RibbonEarth { get => (RIB0 & (1 << 5)) == 1 << 5; set => RIB0 = (byte)((RIB0 & ~(1 << 5)) | (value ? 1 << 5 : 0)); }
public bool RibbonWorld { get => (RIB0 & (1 << 6)) == 1 << 6; set => RIB0 = (byte)((RIB0 & ~(1 << 6)) | (value ? 1 << 6 : 0)); }
public bool RibbonEvent { get => (RIB0 & (1 << 7)) == 1 << 7; set => RIB0 = (byte)((RIB0 & ~(1 << 7)) | (value ? 1 << 7 : 0)); }
public bool RibbonChampionWorld { get => (RIB1 & (1 << 0)) == 1 << 0; set => RIB1 = (byte)((RIB1 & ~(1 << 0)) | (value ? 1 << 0 : 0)); }
public bool RibbonBirthday { get => (RIB1 & (1 << 1)) == 1 << 1; set => RIB1 = (byte)((RIB1 & ~(1 << 1)) | (value ? 1 << 1 : 0)); }
public bool RibbonSpecial { get => (RIB1 & (1 << 2)) == 1 << 2; set => RIB1 = (byte)((RIB1 & ~(1 << 2)) | (value ? 1 << 2 : 0)); }
public bool RibbonSouvenir { get => (RIB1 & (1 << 3)) == 1 << 3; set => RIB1 = (byte)((RIB1 & ~(1 << 3)) | (value ? 1 << 3 : 0)); }
public bool RibbonWishing { get => (RIB1 & (1 << 4)) == 1 << 4; set => RIB1 = (byte)((RIB1 & ~(1 << 4)) | (value ? 1 << 4 : 0)); }
public bool RibbonClassic { get => (RIB1 & (1 << 5)) == 1 << 5; set => RIB1 = (byte)((RIB1 & ~(1 << 5)) | (value ? 1 << 5 : 0)); }
public bool RibbonPremier { get => (RIB1 & (1 << 6)) == 1 << 6; set => RIB1 = (byte)((RIB1 & ~(1 << 6)) | (value ? 1 << 6 : 0)); }
public bool RIB1_7 { get => (RIB1 & (1 << 7)) == 1 << 7; set => RIB1 = (byte)((RIB1 & ~(1 << 7)) | (value ? 1 << 7 : 0)); }
// Meta Accessible Properties
public override int[] IVs
{
get => new[] { IV_HP, IV_ATK, IV_DEF, IV_SPE, IV_SPA, IV_SPD };
set
{
if (value.Length != 6) return;
IV_HP = value[0]; IV_ATK = value[1]; IV_DEF = value[2];
IV_SPE = value[3]; IV_SPA = value[4]; IV_SPD = value[5];
}
}
public override void GetIVs(Span<int> value)
{
if (value.Length != 6)
return;
value[0] = IV_HP;
value[1] = IV_ATK;
value[2] = IV_DEF;
value[3] = IV_SPE;
value[4] = IV_SPA;
value[5] = IV_SPD;
}
public int[] EVs
{
get => new[] { EV_HP, EV_ATK, EV_DEF, EV_SPE, EV_SPA, EV_SPD };
set
{
if (value.Length != 6) return;
EV_HP = value[0]; EV_ATK = value[1]; EV_DEF = value[2];
EV_SPE = value[3]; EV_SPA = value[4]; EV_SPD = value[5];
}
}
public bool IsNicknamed => Nickname.Length > 0 || IsEgg;
public override int Location { get => MetLocation; set => MetLocation = (ushort)value; }
public override Moveset Moves
{
get => new(Move1, Move2, Move3, Move4);
set
{
Move1 = value.Move1;
Move2 = value.Move2;
Move3 = value.Move3;
Move4 = value.Move4;
}
}
public override Moveset Relearn
{
get => new(RelearnMove1, RelearnMove2, RelearnMove3, RelearnMove4);
set
2017-01-06 02:33:11 +00:00
{
RelearnMove1 = value.Move1;
RelearnMove2 = value.Move2;
RelearnMove3 = value.Move3;
RelearnMove4 = value.Move4;
2017-01-06 02:33:11 +00:00
}
}
public override PKM ConvertToPKM(ITrainerInfo tr, EncounterCriteria criteria)
{
if (!IsEntity)
throw new ArgumentException(nameof(IsEntity));
var rnd = Util.Rand;
int currentLevel = Level > 0 ? Level : rnd.Next(1, 101);
int metLevel = MetLevel > 0 ? MetLevel : currentLevel;
var version = OriginGame != 0 ? OriginGame : (int)this.GetCompatibleVersion((GameVersion)tr.Game);
var language = Language != 0 ? Language : (int)Core.Language.GetSafeLanguage(Generation, (LanguageID)tr.Language, (GameVersion)version);
var pi = PersonalTable.USUM.GetFormEntry(Species, Form);
PK7 pk = new()
{
Species = Species,
HeldItem = HeldItem,
TID = TID,
SID = SID,
Met_Level = metLevel,
Form = Form,
EncryptionConstant = EncryptionConstant != 0 ? EncryptionConstant : Util.Rand32(),
Version = version,
Language = language,
Ball = Ball,
Move1 = Move1, Move2 = Move2, Move3 = Move3, Move4 = Move4,
RelearnMove1 = RelearnMove1, RelearnMove2 = RelearnMove2,
RelearnMove3 = RelearnMove3, RelearnMove4 = RelearnMove4,
Met_Location = MetLocation,
Egg_Location = EggLocation,
CNT_Cool = CNT_Cool,
CNT_Beauty = CNT_Beauty,
CNT_Cute = CNT_Cute,
CNT_Smart = CNT_Smart,
CNT_Tough = CNT_Tough,
CNT_Sheen = CNT_Sheen,
OT_Name = OT_Name.Length > 0 ? OT_Name : tr.OT,
OT_Gender = OTGender != 3 ? OTGender % 2 : tr.Gender,
HT_Name = OT_Name.Length > 0 ? tr.OT : string.Empty,
HT_Gender = OT_Name.Length > 0 ? tr.Gender : 0,
CurrentHandler = OT_Name.Length > 0 ? 1 : 0,
EXP = Experience.GetEXP(currentLevel, pi.EXPGrowth),
// Ribbons
RibbonCountry = RibbonCountry,
RibbonNational = RibbonNational,
RibbonEarth = RibbonEarth,
RibbonWorld = RibbonWorld,
RibbonClassic = RibbonClassic,
RibbonPremier = RibbonPremier,
RibbonEvent = RibbonEvent,
RibbonBirthday = RibbonBirthday,
RibbonSpecial = RibbonSpecial,
RibbonSouvenir = RibbonSouvenir,
RibbonWishing = RibbonWishing,
RibbonChampionBattle = RibbonChampionBattle,
RibbonChampionRegional = RibbonChampionRegional,
RibbonChampionNational = RibbonChampionNational,
RibbonChampionWorld = RibbonChampionWorld,
OT_Friendship = pi.BaseFriendship,
OT_Intensity = OT_Intensity,
OT_Memory = OT_Memory,
OT_TextVar = OT_TextVar,
OT_Feeling = OT_Feeling,
FatefulEncounter = true,
EV_HP = EV_HP,
EV_ATK = EV_ATK,
EV_DEF = EV_DEF,
EV_SPE = EV_SPE,
EV_SPA = EV_SPA,
EV_SPD = EV_SPD,
};
if (tr is IRegionOrigin o)
2022-03-14 02:24:08 +00:00
{
pk.Country = o.Country;
pk.Region = o.Region;
pk.ConsoleRegion = o.ConsoleRegion;
2022-03-14 02:24:08 +00:00
}
else
2017-01-06 02:33:11 +00:00
{
pk.SetDefaultRegionOrigins();
2017-01-06 02:33:11 +00:00
}
pk.SetMaximumPPCurrent();
if ((tr.Generation > Generation && OriginGame == 0) || !CanBeReceivedByVersion(pk.Version))
{
// give random valid game
do { pk.Version = (int)GameVersion.SN + rnd.Next(4); }
while (!CanBeReceivedByVersion(pk.Version));
}
if (OTGender == 3)
{
pk.TID = tr.TID;
pk.SID = tr.SID;
}
pk.MetDate = Date ?? DateTime.Now;
pk.IsNicknamed = IsNicknamed;
pk.Nickname = IsNicknamed ? Nickname : SpeciesName.GetSpeciesNameGeneration(Species, pk.Language, Generation);
SetPINGA(pk, criteria);
if (IsEgg)
SetEggMetData(pk);
pk.CurrentFriendship = pk.IsEgg ? pi.HatchCycles : pi.BaseFriendship;
pk.RefreshChecksum();
return pk;
}
private void SetEggMetData(PKM pk)
{
pk.IsEgg = true;
pk.EggMetDate = Date;
Refactoring: Move Source (Legality) (#3560) Rewrites a good amount of legality APIs pertaining to: * Legal moves that can be learned * Evolution chains & cross-generation paths * Memory validation with forgotten moves In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data. The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space. The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation. * `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game. * `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`). * Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
pk.Nickname = SpeciesName.GetEggName(pk.Language, Generation);
pk.IsNicknamed = true;
}
private void SetPINGA(PKM pk, EncounterCriteria criteria)
{
var pi = PersonalTable.USUM.GetFormEntry(Species, Form);
pk.Nature = (int)criteria.GetNature((Nature)Nature);
pk.Gender = criteria.GetGender(Gender, pi);
var av = GetAbilityIndex(criteria);
pk.RefreshAbility(av);
SetPID(pk);
SetIVs(pk);
}
private int GetAbilityIndex(EncounterCriteria criteria) => AbilityType switch
{
00 or 01 or 02 => AbilityType, // Fixed 0/1/2
03 or 04 => criteria.GetAbilityFromNumber(Ability), // 0/1 or 0/1/H
_ => throw new ArgumentOutOfRangeException(nameof(AbilityType)),
};
public override AbilityPermission Ability => AbilityType switch
{
0 => AbilityPermission.OnlyFirst,
1 => AbilityPermission.OnlySecond,
2 => AbilityPermission.OnlyHidden,
3 => AbilityPermission.Any12,
_ => AbilityPermission.Any12H,
};
private void SetPID(PKM pk)
{
switch (PIDType)
{
case ShinyType6.FixedValue: // Specified
pk.PID = PID;
break;
case ShinyType6.Random: // Random
pk.PID = Util.Rand32();
break;
case ShinyType6.Always: // Random Shiny
pk.PID = Util.Rand32();
pk.PID = (uint)(((pk.TID ^ pk.SID ^ (pk.PID & 0xFFFF)) << 16) | (pk.PID & 0xFFFF));
break;
case ShinyType6.Never: // Random Nonshiny
pk.PID = Util.Rand32();
if (pk.IsShiny) pk.PID ^= 0x10000000;
break;
}
}
private void SetIVs(PKM pk)
{
Span<int> finalIVs = stackalloc int[6];
GetIVs(finalIVs);
var ivflag = finalIVs.Find(static iv => (byte)(iv - 0xFC) < 3);
var rng = Util.Rand;
if (ivflag == default) // Random IVs
{
for (int i = 0; i < finalIVs.Length; i++)
{
if (finalIVs[i] > 31)
finalIVs[i] = rng.Next(32);
}
}
else // 1/2/3 perfect IVs
{
int IVCount = ivflag - 0xFB;
do { finalIVs[rng.Next(6)] = 31; }
while (finalIVs.Count(31) < IVCount);
for (int i = 0; i < finalIVs.Length; i++)
{
if (finalIVs[i] != 31)
finalIVs[i] = rng.Next(32);
}
}
pk.SetIVs(finalIVs);
}
public bool IsAshGreninjaWC7(PKM pk)
{
return CardID == 2046 && ((pk.SID << 16) | pk.TID) == 0x79F57B49;
}
public override bool IsMatchExact(PKM pk, EvoCriteria evo)
{
if (!IsEgg)
{
if (OTGender != 3)
{
if (SID != pk.SID) return false;
if (TID != pk.TID) return false;
if (OTGender != pk.OT_Gender) return false;
}
if (!string.IsNullOrEmpty(OT_Name) && OT_Name != pk.OT_Name) return false;
if (OriginGame != 0 && OriginGame != pk.Version) return false;
if (EncryptionConstant != 0 && EncryptionConstant != pk.EncryptionConstant) return false;
if (Language != 0 && Language != pk.Language) return false;
}
if (Form != evo.Form && !FormInfo.IsFormChangeable(Species, Form, pk.Form, pk.Format))
return false;
if (IsEgg)
{
if (EggLocation != pk.Egg_Location) // traded
{
if (pk.Egg_Location != Locations.LinkTrade6)
return false;
}
else if (PIDType == 0 && pk.IsShiny)
{
return false; // can't be traded away for un-shiny
}
if (pk.IsEgg && !pk.IsNative)
return false;
}
else
{
if (!Shiny.IsValid(pk)) return false;
if (!IsMatchEggLocation(pk)) return false;
if (MetLocation != pk.Met_Location) return false;
}
if (MetLevel != pk.Met_Level) return false;
if (Ball != pk.Ball) return false;
if (OTGender < 3 && OTGender != pk.OT_Gender) return false;
if (Nature != -1 && pk.Nature != Nature) return false;
if (Gender != 3 && Gender != pk.Gender) return false;
Fracture the encounter matching checks to allow progressive validation (#3137) ## Issue We want to discard-but-remember any slots that aren't a perfect fit, on the off chance that a better one exists later in the search space. If there's no better match, then we gotta go with what we got. ## Example: Wurmple exists in area `X`, and also has a more rare slot for Silcoon, with the same level for both slots. * We have a Silcoon that we've leveled up a few times. Was our Silcoon originally a Wurmple, or was it caught as a Silcoon? * To be sure, we have to check the EC/PID if the Wurmple wouldn't evolve into Cascoon instead. * We don't want to wholly reject that Wurmple slot, as maybe the Met Level isn't within Silcoon's slot range. --- Existing implementation would store "deferred" matches in a list; we only need to keep 1 of these matches around (less allocation!). We also want to differentiate between a "good" deferral and a "bad" deferral; I don't think this is necessary but it's currently used by Mystery Gift matching (implemented for the Eeveelution mystery gifts which matter for evolution moves). The existing logic didn't use inheritance, and instead had static methods being reused across generations. Quite kludgy. Also, the existing logic was a pain to modify the master encounter yield methods, as one generation's quirks had to not impact all other generations that used the method. --- The new implementation splits out the encounter yielding methods to be separate for each generation / subset. Now, things don't have to check `WasLink` for Gen7 origin, because Pokémon Link wasn't a thing in Gen7. --- ## Future Maybe refactoring yielders into "GameCores" that expose yielding behaviors / properties, rather than the static logic. As more generations and side-gamegroups get added (thanks LGPE/GO/GameCube), all this switch stuff gets annoying to maintain instead of just overriding/inheritance. ## Conclusion This shouldn't impact any legality results negatively; if you notice any regressions, report them! This should reduce false flags where we didn't defer-discard an encounter when we should have (wild area mons being confused with raids).
2021-01-30 01:55:27 +00:00
if (pk is IContestStatsReadOnly s && s.IsContestBelow(this))
Fracture the encounter matching checks to allow progressive validation (#3137) ## Issue We want to discard-but-remember any slots that aren't a perfect fit, on the off chance that a better one exists later in the search space. If there's no better match, then we gotta go with what we got. ## Example: Wurmple exists in area `X`, and also has a more rare slot for Silcoon, with the same level for both slots. * We have a Silcoon that we've leveled up a few times. Was our Silcoon originally a Wurmple, or was it caught as a Silcoon? * To be sure, we have to check the EC/PID if the Wurmple wouldn't evolve into Cascoon instead. * We don't want to wholly reject that Wurmple slot, as maybe the Met Level isn't within Silcoon's slot range. --- Existing implementation would store "deferred" matches in a list; we only need to keep 1 of these matches around (less allocation!). We also want to differentiate between a "good" deferral and a "bad" deferral; I don't think this is necessary but it's currently used by Mystery Gift matching (implemented for the Eeveelution mystery gifts which matter for evolution moves). The existing logic didn't use inheritance, and instead had static methods being reused across generations. Quite kludgy. Also, the existing logic was a pain to modify the master encounter yield methods, as one generation's quirks had to not impact all other generations that used the method. --- The new implementation splits out the encounter yielding methods to be separate for each generation / subset. Now, things don't have to check `WasLink` for Gen7 origin, because Pokémon Link wasn't a thing in Gen7. --- ## Future Maybe refactoring yielders into "GameCores" that expose yielding behaviors / properties, rather than the static logic. As more generations and side-gamegroups get added (thanks LGPE/GO/GameCube), all this switch stuff gets annoying to maintain instead of just overriding/inheritance. ## Conclusion This shouldn't impact any legality results negatively; if you notice any regressions, report them! This should reduce false flags where we didn't defer-discard an encounter when we should have (wild area mons being confused with raids).
2021-01-30 01:55:27 +00:00
return false;
if (CardID is 1122 or 1133 && !CanBeReceivedByVersion(pk.Version))
return false; // Each version pair has a separate card -- since we aren't using deferral/partial match logic to reorder, just return false.
if (CardID == 2046) // Greninja WC has variant PID and can arrive @ 36 or 37
return pk.SM; // not USUM
return PIDType != 0 || pk.PID == PID;
}
public override GameVersion Version
{
get => CardID == 2046 ? GameVersion.SM : GameVersion.Gen7;
set { }
}
protected override bool IsMatchDeferred(PKM pk) => Species != pk.Species;
protected override bool IsMatchPartial(PKM pk)
{
if (RestrictLanguage != 0 && RestrictLanguage != pk.Language)
return true;
if (!CanBeReceivedByVersion(pk.Version))
return true;
return false;
}
}