PKHeX/PKHeX.Core/Legality/Encounters/Verifiers/VerifyCurrentMoves.cs

823 lines
39 KiB
C#
Raw Normal View History

Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
using System;
using System.Collections.Generic;
using System.Linq;
using static PKHeX.Core.LegalityCheckStrings;
using static PKHeX.Core.ParseSettings;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
using static PKHeX.Core.MoveSource;
using static PKHeX.Core.Severity;
using static PKHeX.Core.CheckIdentifier;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
namespace PKHeX.Core
{
/// <summary>
/// Logic to verify the current <see cref="PKM.Moves"/>.
/// </summary>
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
public static class VerifyCurrentMoves
{
/// <summary>
/// Verifies the current moves of the <see cref="pkm"/> data based on the provided <see cref="info"/>.
/// </summary>
/// <param name="pkm">Data to check</param>
/// <param name="info">Encounter conditions and legality info</param>
/// <returns>Validity of the <see cref="PKM.Moves"/></returns>
2017-12-12 00:01:24 +00:00
public static CheckMoveResult[] VerifyMoves(PKM pkm, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var currentMoves = pkm.Moves;
var res = ParseMovesForEncounters(pkm, info, currentMoves);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Duplicate Moves Check
VerifyNoEmptyDuplicates(currentMoves, res);
if (currentMoves[0] == 0) // Can't have an empty move slot for the first move.
res[0] = new CheckMoveResult(res[0], Invalid, LMoveSourceEmpty, CurrentMove);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return res;
}
Add Breeding move ordering logic, and use in legality analysis (#3183) * Initial bred moveset validation logic Unpeel the inheritance via recursion and permitted moves * Volt tackle considerations * Optimize out empty slot skips * Add tests, fix off-by-one's * Require all base moves if empty slot in moveset * Add test to prove failure per Anubis' provided test * Tweak enum labels for easier debugging When two enums share the same underlying value, the ToString/name of the value may be either of the two (or the last defined one, in my debugging). Just give it a separate magic value. * Fix recursion oopsie Also check for scenario where no-base-moves but not enough moves to push base moves out * Add Crystal tutor checks * Add specialized gen2 verification method Game loops through father's moves and pushes in one iteration, rather than checking by type. * Add another case with returning base move * Add push-out requirement for re-added base moves * Minor tweaks Condense tests, fix another off-by-one noticed when creating tests * Disallow inherited parent levelup moves Disallow volt tackle on Gen2/R/S * Split MoveBreed into generation specific classes Gen2 behaves slightly different from Gen3/4, which behaves slightly different from Gen5... and Gen6 behaves differently too. Add some xmldoc as the api is starting to solidify * Add method overload that returns the parse Verify that the parse order is as expected * Add reordering suggestion logic Try sorting first, then go nuclear with rebuilding. * Return base moves if complete fail * Set base moves when generating eggs, only. * Use breed logic to check for egg ordering legality Don't bother helping for split-breed species
2021-04-05 01:30:01 +00:00
private static CheckMoveResult[] ParseMovesForEncounters(PKM pkm, LegalInfo info, int[] currentMoves)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (pkm.Species == (int)Species.Smeargle) // special handling for Smeargle
return ParseMovesForSmeargle(pkm, currentMoves, info); // Smeargle can have any moves except a few
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// gather valid moves for encounter species
var restrict = new LevelUpRestriction(pkm, info);
info.EncounterMoves = new ValidEncounterMoves(pkm, restrict, info.EncounterMatch);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
PKHeX.Core Nullable cleanup (#2401) * Handle some nullable cases Refactor MysteryGift into a second abstract class (backed by a byte array, or fake data) Make some classes have explicit constructors instead of { } initialization * Handle bits more obviously without null * Make SaveFile.BAK explicitly readonly again * merge constructor methods to have readonly fields * Inline some properties * More nullable handling * Rearrange box actions define straightforward classes to not have any null properties * Make extrabyte reference array immutable * Move tooltip creation to designer * Rearrange some logic to reduce nesting * Cache generated fonts * Split mystery gift album purpose * Handle more tooltips * Disallow null setters * Don't capture RNG object, only type enum * Unify learnset objects Now have readonly properties which are never null don't new() empty learnsets (>800 Learnset objects no longer created, total of 2400 objects since we also new() a move & level array) optimize g1/2 reader for early abort case * Access rewrite Initialize blocks in a separate object, and get via that object removes a couple hundred "might be null" warnings since blocks are now readonly getters some block references have been relocated, but interfaces should expose all that's needed put HoF6 controls in a groupbox, and disable * Readonly personal data * IVs non nullable for mystery gift * Explicitly initialize forced encounter moves * Make shadow objects readonly & non-null Put murkrow fix in binary data resource, instead of on startup * Assign dex form fetch on constructor Fixes legality parsing edge cases also handle cxd parse for valid; exit before exception is thrown in FrameGenerator * Remove unnecessary null checks * Keep empty value until init SetPouch sets the value to an actual one during load, but whatever * Readonly team lock data * Readonly locks Put locked encounters at bottom (favor unlocked) * Mail readonly data / offset Rearrange some call flow and pass defaults Add fake classes for SaveDataEditor mocking Always party size, no need to check twice in stat editor use a fake save file as initial data for savedata editor, and for gamedata (wow i found a usage) constrain eventwork editor to struct variable types (uint, int, etc), thus preventing null assignment errors
2019-10-17 01:47:31 +00:00
IReadOnlyList<int> defaultG1LevelMoves = Array.Empty<int>();
IReadOnlyList<int> defaultG2LevelMoves = Array.Empty<int>();
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var defaultTradeback = pkm.TradebackStatus;
bool gb = false;
int gen = info.EncounterMatch.Generation;
if (gen <= 2)
{
gb = true;
defaultG1LevelMoves = info.EncounterMoves.LevelUpMoves[1];
PKHeX.Core Nullable cleanup (#2401) * Handle some nullable cases Refactor MysteryGift into a second abstract class (backed by a byte array, or fake data) Make some classes have explicit constructors instead of { } initialization * Handle bits more obviously without null * Make SaveFile.BAK explicitly readonly again * merge constructor methods to have readonly fields * Inline some properties * More nullable handling * Rearrange box actions define straightforward classes to not have any null properties * Make extrabyte reference array immutable * Move tooltip creation to designer * Rearrange some logic to reduce nesting * Cache generated fonts * Split mystery gift album purpose * Handle more tooltips * Disallow null setters * Don't capture RNG object, only type enum * Unify learnset objects Now have readonly properties which are never null don't new() empty learnsets (>800 Learnset objects no longer created, total of 2400 objects since we also new() a move & level array) optimize g1/2 reader for early abort case * Access rewrite Initialize blocks in a separate object, and get via that object removes a couple hundred "might be null" warnings since blocks are now readonly getters some block references have been relocated, but interfaces should expose all that's needed put HoF6 controls in a groupbox, and disable * Readonly personal data * IVs non nullable for mystery gift * Explicitly initialize forced encounter moves * Make shadow objects readonly & non-null Put murkrow fix in binary data resource, instead of on startup * Assign dex form fetch on constructor Fixes legality parsing edge cases also handle cxd parse for valid; exit before exception is thrown in FrameGenerator * Remove unnecessary null checks * Keep empty value until init SetPouch sets the value to an actual one during load, but whatever * Readonly team lock data * Readonly locks Put locked encounters at bottom (favor unlocked) * Mail readonly data / offset Rearrange some call flow and pass defaults Add fake classes for SaveDataEditor mocking Always party size, no need to check twice in stat editor use a fake save file as initial data for savedata editor, and for gamedata (wow i found a usage) constrain eventwork editor to struct variable types (uint, int, etc), thus preventing null assignment errors
2019-10-17 01:47:31 +00:00
if (pkm.InhabitedGeneration(2))
defaultG2LevelMoves = info.EncounterMoves.LevelUpMoves[2];
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Generation 1 can have different minimum level in different encounter of the same species; update valid level moves
UpdateGen1LevelUpMoves(pkm, info.EncounterMoves, restrict.MinimumLevelGen1, gen, info);
// The same for Generation 2; if move reminder from Stadium 2 is not allowed
if (!ParseSettings.AllowGen2MoveReminder(pkm) && pkm.InhabitedGeneration(2))
UpdateGen2LevelUpMoves(pkm, info.EncounterMoves, restrict.MinimumLevelGen2, gen, info);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
2017-12-12 00:01:24 +00:00
var res = info.Generation < 6
? ParseMovesPre3DS(pkm, currentMoves, info)
: ParseMoves3DS(pkm, currentMoves, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (res.All(x => x.Valid))
return res;
2017-12-12 00:01:24 +00:00
// not valid
if (gb) // restore generation 1 and 2 moves
{
info.EncounterMoves.LevelUpMoves[1] = defaultG1LevelMoves;
if (pkm.InhabitedGeneration(2))
info.EncounterMoves.LevelUpMoves[2] = defaultG2LevelMoves;
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
pkm.TradebackStatus = defaultTradeback;
return res;
}
private static CheckMoveResult[] ParseMovesForSmeargle(PKM pkm, IReadOnlyList<int> currentMoves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (!pkm.IsEgg)
return ParseMovesSketch(pkm, currentMoves);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// can only know sketch as egg
var levelup = new int[info.EvoChainsAllGens.Length][];
levelup[pkm.Format] = new[] {166};
info.EncounterMoves = new ValidEncounterMoves(levelup);
var source = new MoveParseSource { CurrentMoves = currentMoves, };
return ParseMoves(pkm, source, info);
}
private static CheckMoveResult[] ParseMovesWasEggPreRelearn(PKM pkm, IReadOnlyList<int> currentMoves, LegalInfo info, EncounterEgg e)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var EventEggMoves = GetSpecialMoves(info.EncounterMatch);
bool notEvent = EventEggMoves.Count == 0;
// Level up moves could not be inherited if Ditto is parent,
// that means genderless species and male only species (except Nidoran-M and Volbeat; they breed with Nidoran-F and Illumise) could not have level up moves as an egg
var pi = pkm.PersonalInfo;
var AllowLevelUp = notEvent && !pi.Genderless && !(pi.OnlyMale && Breeding.MixedGenderBreeding.Contains(e.Species));
int BaseLevel = AllowLevelUp ? 100 : e.LevelMin;
var LevelUp = MoveList.GetBaseEggMoves(pkm, e.Species, e.Form, e.Version, BaseLevel);
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
var TradebackPreevo = pkm.Format == 2 && info.EncounterMatch.Species > 151;
2018-05-12 15:13:39 +00:00
var NonTradebackLvlMoves = TradebackPreevo
? MoveList.GetExclusivePreEvolutionMoves(pkm, info.EncounterMatch.Species, info.EvoChainsAllGens[2], 2, e.Version).Where(m => m > Legal.MaxMoveID_1).ToArray()
: Array.Empty<int>();
var Egg = MoveEgg.GetEggMoves(pkm.PersonalInfo, e.Species, e.Form, e.Version, e.Generation);
if (info.Generation < 3 && pkm.Format >= 7 && pkm.VC1)
Egg = Egg.Where(m => m <= Legal.MaxMoveID_1).ToArray();
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
2018-03-31 05:11:24 +00:00
bool volt = (info.Generation > 3 || e.Version == GameVersion.E) && Legal.LightBall.Contains(pkm.Species);
var specialMoves = volt && notEvent ? new[] { (int)Move.VoltTackle } : Array.Empty<int>(); // Volt Tackle for bred Pichu line
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var source = new MoveParseSource
{
CurrentMoves = currentMoves,
SpecialSource = specialMoves,
NonTradeBackLevelUpMoves = NonTradebackLvlMoves,
EggLevelUpSource = LevelUp,
EggMoveSource = Egg,
EggEventSource = EventEggMoves,
};
return ParseMoves(pkm, source, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static CheckMoveResult[] ParseMovesSketch(PKM pkm, IReadOnlyList<int> currentMoves)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var res = new CheckMoveResult[4];
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
for (int i = 0; i < 4; i++)
{
var move = currentMoves[i];
res[i] = Legal.InvalidSketch.Contains(move) || (pkm.Format is 6 && move is (int)Move.ThousandArrows or (int)Move.ThousandWaves)
? new CheckMoveResult(Unknown, pkm.Format, Invalid, LMoveSourceInvalidSketch, CurrentMove)
: new CheckMoveResult(Sketch, pkm.Format, CurrentMove);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return res;
}
private static CheckMoveResult[] ParseMoves3DS(PKM pkm, IReadOnlyList<int> currentMoves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
info.EncounterMoves.Relearn = info.Generation >= 6 ? pkm.RelearnMoves : Array.Empty<int>();
return info.EncounterMatch is IMoveset
? ParseMovesSpecialMoveset(pkm, currentMoves, info)
: ParseMovesRelearn(pkm, currentMoves, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
Add Breeding move ordering logic, and use in legality analysis (#3183) * Initial bred moveset validation logic Unpeel the inheritance via recursion and permitted moves * Volt tackle considerations * Optimize out empty slot skips * Add tests, fix off-by-one's * Require all base moves if empty slot in moveset * Add test to prove failure per Anubis' provided test * Tweak enum labels for easier debugging When two enums share the same underlying value, the ToString/name of the value may be either of the two (or the last defined one, in my debugging). Just give it a separate magic value. * Fix recursion oopsie Also check for scenario where no-base-moves but not enough moves to push base moves out * Add Crystal tutor checks * Add specialized gen2 verification method Game loops through father's moves and pushes in one iteration, rather than checking by type. * Add another case with returning base move * Add push-out requirement for re-added base moves * Minor tweaks Condense tests, fix another off-by-one noticed when creating tests * Disallow inherited parent levelup moves Disallow volt tackle on Gen2/R/S * Split MoveBreed into generation specific classes Gen2 behaves slightly different from Gen3/4, which behaves slightly different from Gen5... and Gen6 behaves differently too. Add some xmldoc as the api is starting to solidify * Add method overload that returns the parse Verify that the parse order is as expected * Add reordering suggestion logic Try sorting first, then go nuclear with rebuilding. * Return base moves if complete fail * Set base moves when generating eggs, only. * Use breed logic to check for egg ordering legality Don't bother helping for split-breed species
2021-04-05 01:30:01 +00:00
private static CheckMoveResult[] ParseMovesPre3DS(PKM pkm, int[] currentMoves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (info.EncounterMatch is EncounterEgg e)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
return pkm.IsEgg
? VerifyPreRelearnEggBase(currentMoves, e)
: ParseMovesWasEggPreRelearn(pkm, currentMoves, info, e);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
// Not all games have a re-learner. Initial moves may not fill out all 4 slots.
int gen = info.EncounterMatch.Generation;
if (gen == 1 || (gen == 2 && !AllowGen2MoveReminder(pkm)))
return ParseMovesGenGB(pkm, currentMoves, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return ParseMovesSpecialMoveset(pkm, currentMoves, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static CheckMoveResult[] ParseMovesGenGB(PKM pkm, IReadOnlyList<int> currentMoves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var res = new CheckMoveResult[4];
var enc = info.EncounterMatch;
var InitialMoves = Array.Empty<int>();
var SpecialMoves = GetSpecialMoves(enc);
var games = enc.Generation == 1 ? GBRestrictions.GetGen1Versions(enc) : GBRestrictions.GetGen2Versions(enc, pkm.Korean);
foreach (var ver in games)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var VerInitialMoves = MoveLevelUp.GetEncounterMoves(enc.Species, 0, enc.LevelMin, ver);
if (VerInitialMoves.Intersect(InitialMoves).Count() == VerInitialMoves.Length)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return res;
var source = new MoveParseSource
{
CurrentMoves = currentMoves,
SpecialSource = SpecialMoves,
Base = VerInitialMoves,
};
res = ParseMoves(pkm, source, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (res.All(r => r.Valid))
return res;
InitialMoves = VerInitialMoves;
}
return res;
}
private static CheckMoveResult[] ParseMovesSpecialMoveset(PKM pkm, IReadOnlyList<int> currentMoves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var source = new MoveParseSource
{
CurrentMoves = currentMoves,
SpecialSource = GetSpecialMoves(info.EncounterMatch),
};
return ParseMoves(pkm, source, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
2021-01-11 02:15:33 +00:00
private static IReadOnlyList<int> GetSpecialMoves(IEncounterable enc)
{
2021-01-11 02:15:33 +00:00
if (enc is IMoveset mg)
return mg.Moves;
return Array.Empty<int>();
}
private static CheckMoveResult[] ParseMovesRelearn(PKM pkm, IReadOnlyList<int> currentMoves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var source = new MoveParseSource
{
CurrentMoves = currentMoves,
SpecialSource = GetSpecialMoves(info.EncounterMatch),
};
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
2017-09-04 20:48:10 +00:00
if (info.EncounterMatch is EncounterEgg e)
source.EggMoveSource = MoveEgg.GetEggMoves(pkm.PersonalInfo, e.Species, e.Form, e.Version, e.Generation);
var res = ParseMoves(pkm, source, info);
var relearn = pkm.RelearnMoves;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
for (int i = 0; i < 4; i++)
{
if ((pkm.IsEgg || res[i].IsRelearn) && !relearn.Contains(currentMoves[i]))
res[i] = new CheckMoveResult(res[i], Invalid, string.Format(LMoveRelearnFMiss_0, res[i].Comment), res[i].Identifier);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return res;
}
private static CheckMoveResult[] ParseMoves(PKM pkm, MoveParseSource source, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var res = new CheckMoveResult[4];
bool AllParsed() => res.All(z => z != null);
var required = pkm is not PK1 pk1 ? 1 : GBRestrictions.GetRequiredMoveCount(pk1, source.CurrentMoves, info, source.Base);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Special considerations!
int reset = 0;
2020-12-29 08:58:08 +00:00
if (pkm is IBattleVersion {BattleVersion: not 0} v)
{
reset = ((GameVersion) v.BattleVersion).GetGeneration();
2020-10-04 19:08:16 +00:00
source.ResetSources();
}
// Check empty moves and relearn moves before generation specific moves
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
for (int m = 0; m < 4; m++)
{
if (source.CurrentMoves[m] == 0)
res[m] = new CheckMoveResult(None, pkm.Format, m < required ? Fishy : Valid, LMoveSourceEmpty, CurrentMove);
else if (reset == 0 && info.EncounterMoves.Relearn.Contains(source.CurrentMoves[m]))
res[m] = new CheckMoveResult(Relearn, info.Generation, Valid, LMoveSourceRelearn, CurrentMove);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
if (AllParsed())
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return res;
// Encapsulate arguments to simplify method calls
PKHeX.Core Nullable cleanup (#2401) * Handle some nullable cases Refactor MysteryGift into a second abstract class (backed by a byte array, or fake data) Make some classes have explicit constructors instead of { } initialization * Handle bits more obviously without null * Make SaveFile.BAK explicitly readonly again * merge constructor methods to have readonly fields * Inline some properties * More nullable handling * Rearrange box actions define straightforward classes to not have any null properties * Make extrabyte reference array immutable * Move tooltip creation to designer * Rearrange some logic to reduce nesting * Cache generated fonts * Split mystery gift album purpose * Handle more tooltips * Disallow null setters * Don't capture RNG object, only type enum * Unify learnset objects Now have readonly properties which are never null don't new() empty learnsets (>800 Learnset objects no longer created, total of 2400 objects since we also new() a move & level array) optimize g1/2 reader for early abort case * Access rewrite Initialize blocks in a separate object, and get via that object removes a couple hundred "might be null" warnings since blocks are now readonly getters some block references have been relocated, but interfaces should expose all that's needed put HoF6 controls in a groupbox, and disable * Readonly personal data * IVs non nullable for mystery gift * Explicitly initialize forced encounter moves * Make shadow objects readonly & non-null Put murkrow fix in binary data resource, instead of on startup * Assign dex form fetch on constructor Fixes legality parsing edge cases also handle cxd parse for valid; exit before exception is thrown in FrameGenerator * Remove unnecessary null checks * Keep empty value until init SetPouch sets the value to an actual one during load, but whatever * Readonly team lock data * Readonly locks Put locked encounters at bottom (favor unlocked) * Mail readonly data / offset Rearrange some call flow and pass defaults Add fake classes for SaveDataEditor mocking Always party size, no need to check twice in stat editor use a fake save file as initial data for savedata editor, and for gamedata (wow i found a usage) constrain eventwork editor to struct variable types (uint, int, etc), thus preventing null assignment errors
2019-10-17 01:47:31 +00:00
var moveInfo = new LearnInfo(pkm, source);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Check moves going backwards, marking the move valid in the most current generation when it can be learned
int[] generations = GenerationTraversal.GetVisitedGenerationOrder(pkm, info.EncounterOriginal.Generation);
if (pkm.Format <= 2)
generations = generations.Where(z => z < info.EncounterMoves.LevelUpMoves.Length).ToArray();
if (reset != 0)
generations = generations.Where(z => z >= reset).ToArray();
int lastgen = generations.Length == 0 ? 0 : generations[generations.Length - 1];
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
foreach (var gen in generations)
{
ParseMovesByGeneration(pkm, res, gen, info, moveInfo, lastgen);
if (AllParsed())
return res;
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (pkm.Species == (int)Species.Shedinja && info.Generation <= 4)
ParseShedinjaEvolveMoves(pkm, res, source.CurrentMoves, info.EvoChainsAllGens);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
2021-01-04 00:53:13 +00:00
// ReSharper disable once ConstantNullCoalescingCondition
for (int m = 0; m < 4; m++)
res[m] ??= new CheckMoveResult(Unknown, info.Generation, Invalid, LMoveSourceInvalid, CurrentMove);
return res;
}
private static void ParseMovesByGeneration(PKM pkm, CheckMoveResult[] res, int gen, LegalInfo info, LearnInfo learnInfo, int last)
{
GetHMCompatibility(pkm, res, gen, learnInfo.Source.CurrentMoves, out bool[] HMLearned, out bool KnowDefogWhirlpool);
ParseMovesByGeneration(pkm, res, gen, info, learnInfo);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (gen == last)
ParseMovesByGenerationLast(pkm, res, learnInfo, info.EncounterMatch);
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
switch (gen)
{
case 1 or 2:
ParseMovesByGeneration12(pkm, res, learnInfo.Source.CurrentMoves, gen, info, learnInfo);
break;
case 3 or 4:
if (pkm.Format > gen)
FlagIncompatibleTransferHMs45(res, learnInfo.Source.CurrentMoves, gen, HMLearned, KnowDefogWhirlpool);
break;
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Pokemon that evolved by leveling up while learning a specific move
// This pokemon could only have 3 moves from preevolutions that are not the move used to evolved
// including special and eggs moves before relearn generations
if (EvolutionRestrictions.SpeciesEvolutionWithMove.Contains(pkm.Species))
2018-09-15 05:37:47 +00:00
ParseEvolutionLevelupMove(pkm, res, learnInfo.Source.CurrentMoves, info);
}
private static void ParseMovesByGeneration(PKM pkm, IList<CheckMoveResult> res, int gen, LegalInfo info, LearnInfo learnInfo)
{
var moves = learnInfo.Source.CurrentMoves;
bool native = gen == pkm.Format;
for (int m = 0; m < 4; m++)
{
if (IsCheckValid(res[m])) // already validated with another generation
continue;
int move = moves[m];
if (move == 0)
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (gen <= 2)
{
if (gen == 2 && !native && move > Legal.MaxMoveID_1 && pkm.VC1)
{
res[m] = new CheckMoveResult(Unknown, gen, Invalid, LMoveSourceInvalid, CurrentMove);
continue;
}
if (gen == 2 && learnInfo.Source.EggMoveSource.Contains(move))
res[m] = new CheckMoveResult(EggMove, gen, Valid, LMoveSourceEgg, CurrentMove);
else if (learnInfo.Source.Base.Contains(move))
res[m] = new CheckMoveResult(Initial, gen, Valid, native ? LMoveSourceDefault : string.Format(LMoveFDefault_0, gen), CurrentMove);
}
if (info.EncounterMoves.LevelUpMoves[gen].Contains(move))
res[m] = new CheckMoveResult(LevelUp, gen, Valid, native ? LMoveSourceLevelUp : string.Format(LMoveFLevelUp_0, gen), CurrentMove);
else if (info.EncounterMoves.TMHMMoves[gen].Contains(move))
res[m] = new CheckMoveResult(TMHM, gen, Valid, native ? LMoveSourceTMHM : string.Format(LMoveFTMHM_0, gen), CurrentMove);
else if (info.EncounterMoves.TutorMoves[gen].Contains(move))
res[m] = new CheckMoveResult(Tutor, gen, Valid, native ? LMoveSourceTutor : string.Format(LMoveFTutor_0, gen), CurrentMove);
else if (gen == info.Generation && learnInfo.Source.SpecialSource.Contains(move))
res[m] = new CheckMoveResult(Special, gen, Valid, LMoveSourceSpecial, CurrentMove);
else if (gen >= 8 && MoveEgg.GetIsSharedEggMove(pkm, gen, move))
res[m] = new CheckMoveResult(Shared, gen, Valid, native ? LMoveSourceShared : string.Format(LMoveSourceSharedF, gen), CurrentMove);
if (gen >= 3 || !IsCheckValid(res[m]))
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Gen1/Gen2 only below
if (gen == 2 && learnInfo.Source.NonTradeBackLevelUpMoves.Contains(m))
{
learnInfo.Gen2PreevoMoves.Add(m);
}
else if (gen == 1)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
learnInfo.Gen1Moves.Add(m);
if (learnInfo.Gen2PreevoMoves.Count != 0)
learnInfo.MixedGen12NonTradeback = true;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
if (pkm.TradebackStatus == TradebackType.Any && info.Generation != gen)
pkm.TradebackStatus = TradebackType.WasTradeback;
}
}
private static void ParseMovesByGeneration12(PKM pkm, CheckMoveResult[] res, IReadOnlyList<int> currentMoves, int gen, LegalInfo info, LearnInfo learnInfo)
{
// Mark the gen 1 exclusive moves as illegal because the pokemon also have Non tradeback egg moves.
if (learnInfo.MixedGen12NonTradeback)
{
foreach (int m in learnInfo.Gen1Moves)
res[m] = new CheckMoveResult(res[m], Invalid, LG1MoveExclusive, CurrentMove);
foreach (int m in learnInfo.Gen2PreevoMoves)
res[m] = new CheckMoveResult(res[m], Invalid, LG1TradebackPreEvoMove, CurrentMove);
}
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
if (gen == 1 && pkm.Format == 1 && pkm.Gen1_NotTradeback)
{
ParseRedYellowIncompatibleMoves(pkm, res, currentMoves);
ParseEvolutionsIncompatibleMoves(pkm, res, currentMoves, info.EncounterMoves.TMHMMoves[1]);
}
}
private static void ParseMovesByGenerationLast(PKM pkm, CheckMoveResult[] res, LearnInfo learnInfo, IEncounterable enc)
{
int gen = enc.Generation;
ParseEggMovesInherited(pkm, res, gen, learnInfo);
ParseEggMoves(pkm, res, gen, learnInfo);
ParseEggMovesRemaining(pkm, res, learnInfo, enc);
}
private static void ParseEggMovesInherited(PKM pkm, CheckMoveResult[] res, int gen, LearnInfo learnInfo)
{
var moves = learnInfo.Source.CurrentMoves;
// Check higher-level moves after all the moves but just before egg moves to differentiate it from normal level up moves
// Also check if the base egg moves is a non tradeback move
for (int m = 0; m < 4; m++)
{
var r = res[m];
if (IsCheckValid(r)) // already validated
{
if (gen == 2 && r.Generation != 1)
continue;
}
int move = moves[m];
if (move == 0)
continue;
if (!learnInfo.Source.EggLevelUpSource.Contains(move)) // Check if contains level-up egg moves from parents
continue;
if (learnInfo.IsGen2Pkm && learnInfo.Gen1Moves.Count != 0 && move > Legal.MaxMoveID_1)
{
res[m] = new CheckMoveResult(InheritLevelUp, gen, Invalid, LG1MoveTradeback, CurrentMove);
learnInfo.MixedGen12NonTradeback = true;
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
}
else
{
res[m] = new CheckMoveResult(InheritLevelUp, gen, Valid, LMoveEggLevelUp, CurrentMove);
}
learnInfo.LevelUpEggMoves.Add(m);
if (gen == 2 && learnInfo.Gen1Moves.Contains(m))
learnInfo.Gen1Moves.Remove(m);
}
if (gen <= 2 && learnInfo.Gen1Moves.Count == 0)
pkm.TradebackStatus = TradebackType.Any;
}
private static void ParseEggMoves(PKM pkm, CheckMoveResult[] res, int gen, LearnInfo learnInfo)
{
var moves = learnInfo.Source.CurrentMoves;
// Check egg moves after all the generations and all the moves, every move that can't be learned in another source should have preference
// the moves that can only be learned from egg moves should in the future check if the move combinations can be breed in gens 2 to 5
for (int m = 0; m < 4; m++)
{
if (IsCheckValid(res[m]))
continue;
int move = moves[m];
if (move == 0)
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
bool wasEggMove = learnInfo.Source.EggMoveSource.Contains(move);
if (wasEggMove)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// To learn exclusive generation 1 moves the pokemon was tradeback, but it can't be trade to generation 1
// without removing moves above MaxMoveID_1, egg moves above MaxMoveID_1 and gen 1 moves are incompatible
if (learnInfo.IsGen2Pkm && learnInfo.Gen1Moves.Count != 0 && move > Legal.MaxMoveID_1)
{
res[m] = new CheckMoveResult(EggMove, gen, Invalid, LG1MoveTradeback, CurrentMove);
learnInfo.MixedGen12NonTradeback = true;
}
else
{
res[m] = new CheckMoveResult(EggMove, gen, Valid, LMoveSourceEgg, CurrentMove);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
learnInfo.EggMovesLearned.Add(m);
if (pkm.TradebackStatus == TradebackType.Any && pkm.Generation == 1)
pkm.TradebackStatus = TradebackType.WasTradeback;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
if (!learnInfo.Source.EggEventSource.Contains(move))
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (!wasEggMove)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (learnInfo.IsGen2Pkm && learnInfo.Gen1Moves.Count != 0 && move > Legal.MaxMoveID_1)
{
res[m] = new CheckMoveResult(SpecialEgg, gen, Invalid, LG1MoveTradeback, CurrentMove);
learnInfo.MixedGen12NonTradeback = true;
}
else
{
res[m] = new CheckMoveResult(SpecialEgg, gen, Valid, LMoveSourceEggEvent, CurrentMove);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
if (pkm.TradebackStatus == TradebackType.Any && pkm.Generation == 1)
pkm.TradebackStatus = TradebackType.WasTradeback;
learnInfo.EventEggMoves.Add(m);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
private static void ParseEggMovesRemaining(PKM pkm, CheckMoveResult[] res, LearnInfo learnInfo, IEncounterable enc)
{
// A pokemon could have normal egg moves and regular egg moves
// Only if all regular egg moves are event egg moves or all event egg moves are regular egg moves
var RegularEggMovesLearned = learnInfo.EggMovesLearned.Union(learnInfo.LevelUpEggMoves).ToList();
if (RegularEggMovesLearned.Count != 0 && learnInfo.EventEggMoves.Count != 0)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Moves that are egg moves or event egg moves but not both
2021-04-19 01:18:09 +00:00
var IncompatibleEggMoves = RegularEggMovesLearned.Except(learnInfo.EventEggMoves).Union(learnInfo.EventEggMoves.Except(RegularEggMovesLearned));
foreach (int m in IncompatibleEggMoves)
{
2021-04-19 01:18:09 +00:00
bool isEvent = learnInfo.EventEggMoves.Contains(m);
if (isEvent)
{
if (!learnInfo.EggMovesLearned.Contains(m))
res[m] = new CheckMoveResult(res[m], Invalid, LMoveEggIncompatibleEvent, CurrentMove);
}
else
{
if (learnInfo.EggMovesLearned.Contains(m))
res[m] = new CheckMoveResult(res[m], Invalid, LMoveEggIncompatible, CurrentMove);
else if (learnInfo.LevelUpEggMoves.Contains(m))
res[m] = new CheckMoveResult(res[m], Invalid, LMoveEventEggLevelUp, CurrentMove);
}
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
2020-12-29 08:58:08 +00:00
else if (enc is not EncounterEgg)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Event eggs cannot inherit moves from parents; they are not bred.
foreach (int m in RegularEggMovesLearned)
{
if (learnInfo.EggMovesLearned.Contains(m))
res[m] = new CheckMoveResult(res[m], Invalid, pkm.WasGiftEgg ? LMoveEggMoveGift : LMoveEggInvalidEvent, CurrentMove);
else if (learnInfo.LevelUpEggMoves.Contains(m))
res[m] = new CheckMoveResult(res[m], Invalid, pkm.WasGiftEgg ? LMoveEggInvalidEventLevelUpGift : LMoveEggInvalidEventLevelUp, CurrentMove);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
private static void ParseRedYellowIncompatibleMoves(PKM pkm, IList<CheckMoveResult> res, IReadOnlyList<int> currentMoves)
{
var incompatible = GetIncompatibleRBYMoves(pkm, currentMoves);
if (incompatible.Count == 0)
return;
for (int m = 0; m < 4; m++)
{
if (incompatible.Contains(currentMoves[m]))
res[m] = new CheckMoveResult(res[m], Invalid, LG1MoveLearnSameLevel, CurrentMove);
}
}
private static IList<int> GetIncompatibleRBYMoves(PKM pkm, IReadOnlyList<int> currentMoves)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Check moves that are learned at the same level in Red/Blue and Yellow, these are illegal because there is no Move Reminder in Gen1.
// There are only two incompatibilities for Gen1; there are no illegal combination in Gen2.
switch (pkm.Species)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Vaporeon in Yellow learns Mist and Haze at level 42, Mist can only be learned if it leveled up in the daycare
// Vaporeon in Red/Blue learns Acid Armor at level 42 and level 47 in Yellow
case (int)Species.Vaporeon when pkm.CurrentLevel < 47 && currentMoves.Contains((int)Move.AcidArmor):
{
var incompatible = new List<int>(3);
if (currentMoves.Contains((int)Move.Mist))
incompatible.Add((int)Move.Mist);
if (currentMoves.Contains((int)Move.Haze))
incompatible.Add((int)Move.Haze);
if (incompatible.Count != 0)
incompatible.Add((int)Move.AcidArmor);
return incompatible;
}
// Flareon in Yellow learns Smog at level 42
// Flareon in Red Blue learns Leer at level 42 and level 47 in Yellow
case (int)Species.Flareon when pkm.CurrentLevel < 47 && currentMoves.Contains((int)Move.Leer) && currentMoves.Contains((int)Move.Smog):
return new[] { (int)Move.Leer, (int)Move.Smog };
default: return Array.Empty<int>();
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
PKHeX.Core Nullable cleanup (#2401) * Handle some nullable cases Refactor MysteryGift into a second abstract class (backed by a byte array, or fake data) Make some classes have explicit constructors instead of { } initialization * Handle bits more obviously without null * Make SaveFile.BAK explicitly readonly again * merge constructor methods to have readonly fields * Inline some properties * More nullable handling * Rearrange box actions define straightforward classes to not have any null properties * Make extrabyte reference array immutable * Move tooltip creation to designer * Rearrange some logic to reduce nesting * Cache generated fonts * Split mystery gift album purpose * Handle more tooltips * Disallow null setters * Don't capture RNG object, only type enum * Unify learnset objects Now have readonly properties which are never null don't new() empty learnsets (>800 Learnset objects no longer created, total of 2400 objects since we also new() a move & level array) optimize g1/2 reader for early abort case * Access rewrite Initialize blocks in a separate object, and get via that object removes a couple hundred "might be null" warnings since blocks are now readonly getters some block references have been relocated, but interfaces should expose all that's needed put HoF6 controls in a groupbox, and disable * Readonly personal data * IVs non nullable for mystery gift * Explicitly initialize forced encounter moves * Make shadow objects readonly & non-null Put murkrow fix in binary data resource, instead of on startup * Assign dex form fetch on constructor Fixes legality parsing edge cases also handle cxd parse for valid; exit before exception is thrown in FrameGenerator * Remove unnecessary null checks * Keep empty value until init SetPouch sets the value to an actual one during load, but whatever * Readonly team lock data * Readonly locks Put locked encounters at bottom (favor unlocked) * Mail readonly data / offset Rearrange some call flow and pass defaults Add fake classes for SaveDataEditor mocking Always party size, no need to check twice in stat editor use a fake save file as initial data for savedata editor, and for gamedata (wow i found a usage) constrain eventwork editor to struct variable types (uint, int, etc), thus preventing null assignment errors
2019-10-17 01:47:31 +00:00
private static void ParseEvolutionsIncompatibleMoves(PKM pkm, IList<CheckMoveResult> res, IReadOnlyList<int> moves, IReadOnlyList<int> tmhm)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
GBRestrictions.GetIncompatibleEvolutionMoves(pkm, moves, tmhm,
out var prevSpeciesID,
out var incompatPrev,
out var incompatCurr);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (prevSpeciesID == 0)
return;
var prev = SpeciesStrings[prevSpeciesID];
var curr = SpeciesStrings[pkm.Species];
for (int m = 0; m < 4; m++)
{
if (incompatCurr.Contains(moves[m]))
res[m] = new CheckMoveResult(res[m], Invalid, string.Format(LMoveEvoFLower, curr, prev), CurrentMove);
if (incompatPrev.Contains(moves[m]))
res[m] = new CheckMoveResult(res[m], Invalid, string.Format(LMoveEvoFHigher, curr, prev), CurrentMove);
}
}
private static void ParseShedinjaEvolveMoves(PKM pkm, IList<CheckMoveResult> res, IReadOnlyList<int> currentMoves, IReadOnlyList<IReadOnlyList<EvoCriteria>> evos)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var ShedinjaEvoMovesLearned = new List<int>();
var format = pkm.Format;
for (int gen = Math.Min(format, 4); gen >= 3; gen--)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (evos[gen].Count != 2)
continue; // Was not evolved in this generation
if (gen == 4 && pkm.Ball != 4)
continue; // Was definitively evolved in Gen3
var maxLevel = pkm.CurrentLevel;
var ninjaskMoves = MoveList.GetShedinjaEvolveMoves(pkm, gen, maxLevel);
bool native = gen == format;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
for (int m = 0; m < 4; m++)
{
if (IsCheckValid(res[m])) // already validated
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
continue;
if (!ninjaskMoves.Contains(currentMoves[m]))
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
continue;
var msg = native ? LMoveNincadaEvo : string.Format(LMoveNincadaEvoF_0, gen);
res[m] = new CheckMoveResult(ShedinjaEvo, gen, Valid, msg, CurrentMove);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
ShedinjaEvoMovesLearned.Add(m);
}
}
if (ShedinjaEvoMovesLearned.Count == 0)
return;
if (ShedinjaEvoMovesLearned.Count > 1)
{
// Can't have more than one Ninjask exclusive move on Shedinja
foreach (int m in ShedinjaEvoMovesLearned)
res[m] = new CheckMoveResult(res[m], Invalid, LMoveNincada, CurrentMove);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return;
}
// Double check that the Ninjask move level isn't less than any Nincada move level
int move = ShedinjaEvoMovesLearned[0];
int g = res[move].Generation;
int levelJ = MoveList.GetShedinjaMoveLevel((int)Species.Ninjask, currentMoves[move], g);
for (int m = 0; m < 4; m++)
{
if (m != move)
continue;
if (res[m].Source != LevelUp)
continue;
int levelS = MoveList.GetShedinjaMoveLevel((int)Species.Shedinja, currentMoves[m], res[m].Generation);
if (levelS > 0)
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
int levelN = MoveList.GetShedinjaMoveLevel((int)Species.Nincada, currentMoves[m], res[m].Generation);
if (levelN > levelJ)
res[m] = new CheckMoveResult(res[m], Invalid, string.Format(LMoveEvoFHigher, SpeciesStrings[(int)Species.Nincada], SpeciesStrings[(int)Species.Ninjask]), CurrentMove);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void ParseEvolutionLevelupMove(PKM pkm, IList<CheckMoveResult> res, IReadOnlyList<int> currentMoves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Ignore if there is an invalid move or an empty move, this validation is only for 4 non-empty moves that are all valid, but invalid as a 4 combination
// Ignore Mr. Mime and Sudowodoo from generations 1 to 3, they cant be evolved from Bonsly or Munchlax
// Ignore if encounter species is the evolution species, the pokemon was not evolved by the player
if (info.EncounterMatch.Species == pkm.Species)
return;
if (!res.All(r => r?.Valid ?? false) || currentMoves.Any(m => m == 0) || (EvolutionRestrictions.BabyEvolutionWithMove.Contains(pkm.Species) && info.Generation <= 3))
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return;
var ValidMoves = MoveList.GetValidPostEvolutionMoves(pkm, pkm.Species, info.EvoChainsAllGens, GameVersion.Any);
// Add the evolution moves to valid moves in case some of these moves could not be learned after evolving
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
switch (pkm.Species)
{
2019-06-01 17:22:49 +00:00
case (int)Species.MrMime: // Mr. Mime (Mime Jr with Mimic)
case (int)Species.Sudowoodo: // Sudowoodo (Bonsly with Mimic)
ValidMoves.Add((int)Move.Mimic);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
break;
2019-06-01 17:22:49 +00:00
case (int)Species.Ambipom: // Ambipom (Aipom with Double Hit)
ValidMoves.Add((int)Move.DoubleHit);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
break;
2019-06-01 17:22:49 +00:00
case (int)Species.Lickilicky: // Lickilicky (Lickitung with Rollout)
ValidMoves.Add((int)Move.Rollout);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
break;
2019-06-01 17:22:49 +00:00
case (int)Species.Tangrowth: // Tangrowth (Tangela with Ancient Power)
case (int)Species.Yanmega: // Yanmega (Yanma with Ancient Power)
case (int)Species.Mamoswine: // Mamoswine (Piloswine with Ancient Power)
ValidMoves.Add((int)Move.AncientPower);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
break;
2019-06-01 17:22:49 +00:00
case (int)Species.Sylveon: // Sylveon (Eevee with Fairy Move)
// Add every fairy moves without checking if Eevee learn it or not; pokemon moves are determined legal before this function
ValidMoves.AddRange(EvolutionRestrictions.FairyMoves);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
break;
2019-06-01 17:22:49 +00:00
case (int)Species.Tsareena: // Tsareena (Steenee with Stomp)
ValidMoves.Add((int)Move.Stomp);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
break;
}
if (currentMoves.Any(m => ValidMoves.Contains(m)))
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
return;
for (int m = 0; m < 4; m++)
res[m] = new CheckMoveResult(res[m], Invalid, string.Format(LMoveEvoFCombination_0, SpeciesStrings[pkm.Species]), CurrentMove);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void GetHMCompatibility(PKM pkm, IReadOnlyList<CheckResult> res, int gen, IReadOnlyList<int> moves, out bool[] HMLearned, out bool KnowDefogWhirlpool)
{
HMLearned = new bool[4];
// Check if pokemon knows HM moves from generation 3 and 4 but are not valid yet, that means it cant learn the HMs in future generations
if (gen == 4 && pkm.Format > 4)
{
IsHMSource(HMLearned, Legal.HM_4_RemovePokeTransfer);
KnowDefogWhirlpool = moves.Where((m, i) => IsDefogWhirl(m) && IsCheckInvalid(res[i])).Count() == 2;
return;
}
KnowDefogWhirlpool = false;
if (gen == 3 && pkm.Format > 3)
IsHMSource(HMLearned, Legal.HM_3);
void IsHMSource(IList<bool> flags, ICollection<int> source)
{
for (int i = 0; i < 4; i++)
flags[i] = IsCheckInvalid(res[i]) && source.Contains(moves[i]);
}
}
2021-01-26 04:58:56 +00:00
private static bool IsDefogWhirl(int move) => move is (int)Move.Defog or (int)Move.Whirlpool;
private static bool IsCheckInvalid(CheckResult? chk) => !(chk?.Valid ?? false);
private static bool IsCheckValid(CheckResult? chk) => chk?.Valid ?? false;
private static void FlagIncompatibleTransferHMs45(CheckMoveResult[] res, IReadOnlyList<int> currentMoves, int gen, IReadOnlyList<bool> HMLearned, bool KnowDefogWhirlpool)
{
// After all the moves from the generations 3 and 4,
// including egg moves if is the origin generation because some hidden moves are also special egg moves in gen 3
// Check if the marked hidden moves that were invalid at the start are now marked as valid, that means
// the hidden move was learned in gen 3 or 4 but was not removed when transfer to 4 or 5
if (KnowDefogWhirlpool)
{
int invalidCount = currentMoves.Where((m, i) => IsDefogWhirl(m) && IsCheckValid(res[i])).Count();
if (invalidCount == 2) // can't know both at the same time
{
for (int i = 0; i < 4; i++) // flag both moves
{
if (IsDefogWhirl(currentMoves[i]))
res[i] = new CheckMoveResult(res[i], Invalid, LTransferMoveG4HM, CurrentMove);
}
}
}
// Flag moves that are only legal when learned from a past-gen HM source
for (int i = 0; i < HMLearned.Count; i++)
{
if (HMLearned[i] && IsCheckValid(res[i]))
res[i] = new CheckMoveResult(res[i], Invalid, string.Format(LTransferMoveHM, gen, gen + 1), CurrentMove);
}
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
private static CheckMoveResult[] VerifyPreRelearnEggBase(int[] currentMoves, EncounterEgg e)
2017-09-04 20:48:10 +00:00
{
Add Breeding move ordering logic, and use in legality analysis (#3183) * Initial bred moveset validation logic Unpeel the inheritance via recursion and permitted moves * Volt tackle considerations * Optimize out empty slot skips * Add tests, fix off-by-one's * Require all base moves if empty slot in moveset * Add test to prove failure per Anubis' provided test * Tweak enum labels for easier debugging When two enums share the same underlying value, the ToString/name of the value may be either of the two (or the last defined one, in my debugging). Just give it a separate magic value. * Fix recursion oopsie Also check for scenario where no-base-moves but not enough moves to push base moves out * Add Crystal tutor checks * Add specialized gen2 verification method Game loops through father's moves and pushes in one iteration, rather than checking by type. * Add another case with returning base move * Add push-out requirement for re-added base moves * Minor tweaks Condense tests, fix another off-by-one noticed when creating tests * Disallow inherited parent levelup moves Disallow volt tackle on Gen2/R/S * Split MoveBreed into generation specific classes Gen2 behaves slightly different from Gen3/4, which behaves slightly different from Gen5... and Gen6 behaves differently too. Add some xmldoc as the api is starting to solidify * Add method overload that returns the parse Verify that the parse order is as expected * Add reordering suggestion logic Try sorting first, then go nuclear with rebuilding. * Return base moves if complete fail * Set base moves when generating eggs, only. * Use breed logic to check for egg ordering legality Don't bother helping for split-breed species
2021-04-05 01:30:01 +00:00
CheckMoveResult[] result = new CheckMoveResult[4];
_ = VerifyRelearnMoves.VerifyEggMoveset(e, result, currentMoves, CurrentMove);
Add Breeding move ordering logic, and use in legality analysis (#3183) * Initial bred moveset validation logic Unpeel the inheritance via recursion and permitted moves * Volt tackle considerations * Optimize out empty slot skips * Add tests, fix off-by-one's * Require all base moves if empty slot in moveset * Add test to prove failure per Anubis' provided test * Tweak enum labels for easier debugging When two enums share the same underlying value, the ToString/name of the value may be either of the two (or the last defined one, in my debugging). Just give it a separate magic value. * Fix recursion oopsie Also check for scenario where no-base-moves but not enough moves to push base moves out * Add Crystal tutor checks * Add specialized gen2 verification method Game loops through father's moves and pushes in one iteration, rather than checking by type. * Add another case with returning base move * Add push-out requirement for re-added base moves * Minor tweaks Condense tests, fix another off-by-one noticed when creating tests * Disallow inherited parent levelup moves Disallow volt tackle on Gen2/R/S * Split MoveBreed into generation specific classes Gen2 behaves slightly different from Gen3/4, which behaves slightly different from Gen5... and Gen6 behaves differently too. Add some xmldoc as the api is starting to solidify * Add method overload that returns the parse Verify that the parse order is as expected * Add reordering suggestion logic Try sorting first, then go nuclear with rebuilding. * Return base moves if complete fail * Set base moves when generating eggs, only. * Use breed logic to check for egg ordering legality Don't bother helping for split-breed species
2021-04-05 01:30:01 +00:00
return result;
2017-09-04 20:48:10 +00:00
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
private static void VerifyNoEmptyDuplicates(IReadOnlyList<int> moves, CheckMoveResult[] res)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
bool emptySlot = false;
for (int i = 0; i < 4; i++)
{
var move = moves[i];
if (move == 0)
{
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
emptySlot = true;
continue;
}
// If an empty slot was noted for a prior move, flag the empty slots.
if (emptySlot)
{
FlagEmptySlotsBeforeIndex(moves, res, i);
emptySlot = false;
continue;
}
// Check for same move in next move slots
FlagDuplicateMovesAfterIndex(moves, res, i, move);
}
}
private static void FlagDuplicateMovesAfterIndex(IReadOnlyList<int> moves, CheckMoveResult[] res, int i, int move)
{
for (int j = i + 1; j < 4; j++)
{
if (moves[j] != move)
continue;
res[i] = new CheckMoveResult(res[i], Invalid, LMoveSourceDuplicate);
return;
}
}
private static void FlagEmptySlotsBeforeIndex(IReadOnlyList<int> moves, CheckMoveResult[] res, int i)
{
for (int k = i - 1; k >= 0; k--)
{
if (moves[k] != 0)
return;
res[k] = new CheckMoveResult(res[k], Invalid, LMoveSourceEmpty);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
2018-06-09 15:04:40 +00:00
private static void UpdateGen1LevelUpMoves(PKM pkm, ValidEncounterMoves EncounterMoves, int defaultLvlG1, int generation, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (generation >= 3)
return;
PKHeX.Core Nullable cleanup (#2401) * Handle some nullable cases Refactor MysteryGift into a second abstract class (backed by a byte array, or fake data) Make some classes have explicit constructors instead of { } initialization * Handle bits more obviously without null * Make SaveFile.BAK explicitly readonly again * merge constructor methods to have readonly fields * Inline some properties * More nullable handling * Rearrange box actions define straightforward classes to not have any null properties * Make extrabyte reference array immutable * Move tooltip creation to designer * Rearrange some logic to reduce nesting * Cache generated fonts * Split mystery gift album purpose * Handle more tooltips * Disallow null setters * Don't capture RNG object, only type enum * Unify learnset objects Now have readonly properties which are never null don't new() empty learnsets (>800 Learnset objects no longer created, total of 2400 objects since we also new() a move & level array) optimize g1/2 reader for early abort case * Access rewrite Initialize blocks in a separate object, and get via that object removes a couple hundred "might be null" warnings since blocks are now readonly getters some block references have been relocated, but interfaces should expose all that's needed put HoF6 controls in a groupbox, and disable * Readonly personal data * IVs non nullable for mystery gift * Explicitly initialize forced encounter moves * Make shadow objects readonly & non-null Put murkrow fix in binary data resource, instead of on startup * Assign dex form fetch on constructor Fixes legality parsing edge cases also handle cxd parse for valid; exit before exception is thrown in FrameGenerator * Remove unnecessary null checks * Keep empty value until init SetPouch sets the value to an actual one during load, but whatever * Readonly team lock data * Readonly locks Put locked encounters at bottom (favor unlocked) * Mail readonly data / offset Rearrange some call flow and pass defaults Add fake classes for SaveDataEditor mocking Always party size, no need to check twice in stat editor use a fake save file as initial data for savedata editor, and for gamedata (wow i found a usage) constrain eventwork editor to struct variable types (uint, int, etc), thus preventing null assignment errors
2019-10-17 01:47:31 +00:00
var lvlG1 = info.EncounterMatch.LevelMin + 1;
if (lvlG1 == defaultLvlG1)
return;
EncounterMoves.LevelUpMoves[1] = MoveList.GetValidMoves(pkm, info.EvoChainsAllGens[1], generation: 1, minLvLG1: lvlG1, types: MoveSourceType.LevelUp).ToList();
}
2018-06-09 15:04:40 +00:00
private static void UpdateGen2LevelUpMoves(PKM pkm, ValidEncounterMoves EncounterMoves, int defaultLvlG2, int generation, LegalInfo info)
{
if (generation >= 3)
return;
PKHeX.Core Nullable cleanup (#2401) * Handle some nullable cases Refactor MysteryGift into a second abstract class (backed by a byte array, or fake data) Make some classes have explicit constructors instead of { } initialization * Handle bits more obviously without null * Make SaveFile.BAK explicitly readonly again * merge constructor methods to have readonly fields * Inline some properties * More nullable handling * Rearrange box actions define straightforward classes to not have any null properties * Make extrabyte reference array immutable * Move tooltip creation to designer * Rearrange some logic to reduce nesting * Cache generated fonts * Split mystery gift album purpose * Handle more tooltips * Disallow null setters * Don't capture RNG object, only type enum * Unify learnset objects Now have readonly properties which are never null don't new() empty learnsets (>800 Learnset objects no longer created, total of 2400 objects since we also new() a move & level array) optimize g1/2 reader for early abort case * Access rewrite Initialize blocks in a separate object, and get via that object removes a couple hundred "might be null" warnings since blocks are now readonly getters some block references have been relocated, but interfaces should expose all that's needed put HoF6 controls in a groupbox, and disable * Readonly personal data * IVs non nullable for mystery gift * Explicitly initialize forced encounter moves * Make shadow objects readonly & non-null Put murkrow fix in binary data resource, instead of on startup * Assign dex form fetch on constructor Fixes legality parsing edge cases also handle cxd parse for valid; exit before exception is thrown in FrameGenerator * Remove unnecessary null checks * Keep empty value until init SetPouch sets the value to an actual one during load, but whatever * Readonly team lock data * Readonly locks Put locked encounters at bottom (favor unlocked) * Mail readonly data / offset Rearrange some call flow and pass defaults Add fake classes for SaveDataEditor mocking Always party size, no need to check twice in stat editor use a fake save file as initial data for savedata editor, and for gamedata (wow i found a usage) constrain eventwork editor to struct variable types (uint, int, etc), thus preventing null assignment errors
2019-10-17 01:47:31 +00:00
var lvlG2 = info.EncounterMatch.LevelMin + 1;
if (lvlG2 == defaultLvlG2)
return;
EncounterMoves.LevelUpMoves[2] = MoveList.GetValidMoves(pkm, info.EvoChainsAllGens[2], generation: 2, minLvLG2: defaultLvlG2, types: MoveSourceType.LevelUp).ToList();
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
}