Refactoring: Move Source (Legality) (#3560)
Rewrites a good amount of legality APIs pertaining to:
* Legal moves that can be learned
* Evolution chains & cross-generation paths
* Memory validation with forgotten moves
In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data.
The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space.
The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation.
* `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game.
* `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`).
* Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
|
|
|
using System;
|
|
|
|
using System.Diagnostics.CodeAnalysis;
|
|
|
|
using static PKHeX.Core.LearnMethod;
|
|
|
|
using static PKHeX.Core.LearnEnvironment;
|
|
|
|
|
|
|
|
namespace PKHeX.Core;
|
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// Exposes information about how moves are learned in <see cref="USUM"/>.
|
|
|
|
/// </summary>
|
|
|
|
public sealed class LearnSource7GG : ILearnSource
|
|
|
|
{
|
|
|
|
public static readonly LearnSource7GG Instance = new();
|
|
|
|
private static readonly PersonalTable7GG Personal = PersonalTable.GG;
|
|
|
|
private static readonly Learnset[] Learnsets = Legal.LevelUpGG;
|
|
|
|
private const int MaxSpecies = Legal.MaxSpeciesID_7b;
|
|
|
|
private const LearnEnvironment Game = GG;
|
|
|
|
private const int ReminderBonus = 100; // Move reminder allows re-learning ALL level up moves regardless of level.
|
|
|
|
|
2022-08-27 06:43:36 +00:00
|
|
|
public Learnset GetLearnset(ushort species, int form) => Learnsets[Personal.GetFormIndex(species, form)];
|
Refactoring: Move Source (Legality) (#3560)
Rewrites a good amount of legality APIs pertaining to:
* Legal moves that can be learned
* Evolution chains & cross-generation paths
* Memory validation with forgotten moves
In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data.
The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space.
The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation.
* `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game.
* `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`).
* Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
|
|
|
|
2022-08-27 06:43:36 +00:00
|
|
|
public bool TryGetPersonal(ushort species, int form, [NotNullWhen(true)] out PersonalInfo? pi)
|
Refactoring: Move Source (Legality) (#3560)
Rewrites a good amount of legality APIs pertaining to:
* Legal moves that can be learned
* Evolution chains & cross-generation paths
* Memory validation with forgotten moves
In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data.
The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space.
The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation.
* `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game.
* `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`).
* Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
|
|
|
{
|
|
|
|
pi = null;
|
|
|
|
if ((uint)species > MaxSpecies)
|
|
|
|
return false;
|
|
|
|
pi = Personal[species, form];
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2022-08-27 06:43:36 +00:00
|
|
|
public MoveLearnInfo GetCanLearn(PKM pk, PersonalInfo pi, EvoCriteria evo, ushort move, MoveSourceType types = MoveSourceType.All, LearnOption option = LearnOption.Current)
|
Refactoring: Move Source (Legality) (#3560)
Rewrites a good amount of legality APIs pertaining to:
* Legal moves that can be learned
* Evolution chains & cross-generation paths
* Memory validation with forgotten moves
In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data.
The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space.
The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation.
* `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game.
* `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`).
* Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
|
|
|
{
|
|
|
|
if (types.HasFlagFast(MoveSourceType.LevelUp))
|
|
|
|
{
|
|
|
|
var learn = GetLearnset(evo.Species, evo.Form);
|
|
|
|
var level = learn.GetLevelLearnMove(move);
|
|
|
|
if (level != -1) // Can relearn at any level!
|
|
|
|
return new(LevelUp, Game, (byte)level);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (types.HasFlagFast(MoveSourceType.Machine) && GetIsTM(pi, move))
|
|
|
|
return new(TMHM, Game);
|
|
|
|
|
|
|
|
if (types.HasFlagFast(MoveSourceType.EnhancedTutor) && GetIsEnhancedTutor(evo.Species, evo.Form, move))
|
|
|
|
return new(Tutor, Game);
|
|
|
|
|
|
|
|
return default;
|
|
|
|
}
|
|
|
|
|
2022-08-27 06:43:36 +00:00
|
|
|
private static bool GetIsEnhancedTutor(ushort species, int form, ushort move)
|
Refactoring: Move Source (Legality) (#3560)
Rewrites a good amount of legality APIs pertaining to:
* Legal moves that can be learned
* Evolution chains & cross-generation paths
* Memory validation with forgotten moves
In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data.
The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space.
The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation.
* `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game.
* `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`).
* Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
|
|
|
{
|
|
|
|
if (species == (int)Species.Pikachu && form == 8) // Partner
|
|
|
|
return Tutor_StarterPikachu.AsSpan().Contains(move);
|
|
|
|
if (species == (int)Species.Eevee && form == 1) // Partner
|
|
|
|
return Tutor_StarterEevee.AsSpan().Contains(move);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2022-08-27 06:43:36 +00:00
|
|
|
private static bool GetIsTM(PersonalInfo info, ushort move)
|
Refactoring: Move Source (Legality) (#3560)
Rewrites a good amount of legality APIs pertaining to:
* Legal moves that can be learned
* Evolution chains & cross-generation paths
* Memory validation with forgotten moves
In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data.
The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space.
The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation.
* `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game.
* `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`).
* Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
|
|
|
{
|
|
|
|
var index = Array.IndexOf(TMHM_GG, move);
|
|
|
|
if (index == -1)
|
|
|
|
return false;
|
|
|
|
return info.TMHM[index];
|
|
|
|
}
|
|
|
|
|
|
|
|
public void GetAllMoves(Span<bool> result, PKM pk, EvoCriteria evo, MoveSourceType types = MoveSourceType.All)
|
|
|
|
{
|
|
|
|
if (!TryGetPersonal(evo.Species, evo.Form, out var pi))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (types.HasFlagFast(MoveSourceType.LevelUp))
|
|
|
|
{
|
|
|
|
var learn = GetLearnset(evo.Species, evo.Form);
|
|
|
|
(bool hasMoves, int start, int end) = learn.GetMoveRange(ReminderBonus);
|
|
|
|
if (hasMoves)
|
|
|
|
{
|
|
|
|
var moves = learn.Moves;
|
|
|
|
for (int i = end; i >= start; i--)
|
|
|
|
result[moves[i]] = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (types.HasFlagFast(MoveSourceType.Machine))
|
|
|
|
{
|
|
|
|
var flags = pi.TMHM;
|
|
|
|
var moves = TMHM_GG;
|
|
|
|
for (int i = 0; i < moves.Length; i++)
|
|
|
|
{
|
|
|
|
if (flags[i])
|
|
|
|
result[moves[i]] = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (types.HasFlagFast(MoveSourceType.SpecialTutor))
|
|
|
|
{
|
|
|
|
if (evo.Species == (int)Species.Pikachu && evo.Form == 8) // Partner
|
|
|
|
{
|
|
|
|
foreach (var move in Tutor_StarterPikachu)
|
|
|
|
result[move] = true;
|
|
|
|
}
|
|
|
|
else if (evo.Species == (int)Species.Eevee && evo.Form == 1) // Partner
|
|
|
|
{
|
|
|
|
foreach (var move in Tutor_StarterEevee)
|
|
|
|
result[move] = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-08-27 06:43:36 +00:00
|
|
|
private static readonly ushort[] TMHM_GG =
|
Refactoring: Move Source (Legality) (#3560)
Rewrites a good amount of legality APIs pertaining to:
* Legal moves that can be learned
* Evolution chains & cross-generation paths
* Memory validation with forgotten moves
In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data.
The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space.
The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation.
* `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game.
* `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`).
* Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
|
|
|
{
|
|
|
|
029, 269, 270, 100, 156, 113, 182, 164, 115, 091,
|
|
|
|
261, 263, 280, 019, 069, 086, 525, 369, 231, 399,
|
|
|
|
492, 157, 009, 404, 127, 398, 092, 161, 503, 339,
|
|
|
|
007, 605, 347, 406, 008, 085, 053, 087, 200, 094,
|
|
|
|
089, 120, 247, 583, 076, 126, 057, 063, 276, 355,
|
|
|
|
059, 188, 072, 430, 058, 446, 006, 529, 138, 224,
|
|
|
|
// rest are same as SM, unused
|
|
|
|
|
|
|
|
// No HMs
|
|
|
|
};
|
|
|
|
|
2022-08-27 06:43:36 +00:00
|
|
|
private static readonly ushort[] Tutor_StarterPikachu =
|
Refactoring: Move Source (Legality) (#3560)
Rewrites a good amount of legality APIs pertaining to:
* Legal moves that can be learned
* Evolution chains & cross-generation paths
* Memory validation with forgotten moves
In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data.
The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space.
The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation.
* `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game.
* `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`).
* Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
|
|
|
{
|
|
|
|
(int)Move.ZippyZap,
|
|
|
|
(int)Move.SplishySplash,
|
|
|
|
(int)Move.FloatyFall,
|
|
|
|
//(int)Move.PikaPapow, // Joycon Shake
|
|
|
|
};
|
|
|
|
|
2022-08-27 06:43:36 +00:00
|
|
|
private static readonly ushort[] Tutor_StarterEevee =
|
Refactoring: Move Source (Legality) (#3560)
Rewrites a good amount of legality APIs pertaining to:
* Legal moves that can be learned
* Evolution chains & cross-generation paths
* Memory validation with forgotten moves
In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data.
The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space.
The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation.
* `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game.
* `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`).
* Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
|
|
|
{
|
|
|
|
(int)Move.BouncyBubble,
|
|
|
|
(int)Move.BuzzyBuzz,
|
|
|
|
(int)Move.SizzlySlide,
|
|
|
|
(int)Move.GlitzyGlow,
|
|
|
|
(int)Move.BaddyBad,
|
|
|
|
(int)Move.SappySeed,
|
|
|
|
(int)Move.FreezyFrost,
|
|
|
|
(int)Move.SparklySwirl,
|
|
|
|
//(int)Move.VeeveeVolley, // Joycon Shake
|
|
|
|
};
|
|
|
|
}
|