PKHeX/PKHeX.Core/Legality/Encounters/LegalInfo.cs

82 lines
3.7 KiB
C#
Raw Normal View History

Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
using System.Collections.Generic;
namespace PKHeX.Core
{
/// <summary>
/// Calculated Information storage with properties useful for parsing the legality of the input <see cref="PKM"/>.
/// </summary>
public sealed class LegalInfo
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
/// <summary>The <see cref="PKM"/> object used for comparisons.</summary>
private readonly PKM pkm;
/// <summary>The generation of games the <see cref="PKM"/> originated from.</summary>
public int Generation { get; internal set; }
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
/// <summary>The Game the <see cref="PKM"/> originated from.</summary>
public GameVersion Game { get; internal set; }
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
/// <summary>The matched Encounter details for the <see cref="PKM"/>. </summary>
public IEncounterable EncounterMatch
{
get => _match;
set
{
if (_match != null && (value.LevelMin != _match.LevelMin || value.Species != _match.Species))
_evochains = null; // clear if evo chain has the potential to be different
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
_match = value;
Parse.Clear();
}
}
private IEncounterable _match;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
/// <summary>Indicates whether or not the <see cref="PKM"/> originated from <see cref="GameVersion.XD"/>.</summary>
public bool WasXD => pkm?.Version == 15 && EncounterMatch is IVersion v && v.Version == GameVersion.XD;
/// <summary>Base Relearn Moves for the <see cref="EncounterMatch"/>.</summary>
public IReadOnlyList<int> RelearnBase { get; internal set; }
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
/// <summary>Top level Legality Check result list for the <see cref="EncounterMatch"/>.</summary>
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
public readonly List<CheckResult> Parse = new List<CheckResult>();
public CheckResult[] Relearn { get; internal set; } = new CheckResult[4];
public CheckMoveResult[] Moves { get; internal set; } = new CheckMoveResult[4];
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
public ValidEncounterMoves EncounterMoves { get; internal set; }
public IReadOnlyList<EvoCriteria>[] EvoChainsAllGens => _evochains ?? (_evochains = EvolutionChain.GetEvolutionChainsAllGens(pkm, EncounterMatch));
private IReadOnlyList<EvoCriteria>[] _evochains;
/// <summary><see cref="RNG"/> related information that generated the <see cref="PKM.PID"/>/<see cref="PKM.IVs"/> value(s).</summary>
public PIDIV PIDIV { get; internal set; }
/// <summary>Indicates whether or not the <see cref="PIDIV"/> can originate from the <see cref="EncounterMatch"/>.</summary>
/// <remarks>This boolean is true until all valid <see cref="PIDIV"/> encounters are tested, after which it is false.</remarks>
public bool PIDIVMatches { get; internal set; } = true;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
/// <summary>Indicates whether or not the <see cref="PIDIV"/> can originate from the <see cref="EncounterMatch"/> with explicit <see cref="RNG"/> <see cref="Frame"/> matching.</summary>
/// <remarks>This boolean is true until all valid <see cref="Frame"/> entries are tested for all possible <see cref="EncounterSlot"/> matches, after which it is false.</remarks>
public bool FrameMatches { get; internal set; } = true;
public readonly bool Korean;
public LegalInfo(PKM pk)
{
pkm = pk;
Korean = pk.Korean;
// Store repeatedly accessed values
Game = (GameVersion)pkm.Version;
Generation = pkm.GenNumber;
}
/// <summary>List of all near-matches that were rejected for a given reason.</summary>
public List<EncounterRejected> InvalidMatches;
internal void Reject(CheckResult c)
{
(InvalidMatches ?? (InvalidMatches = new List<EncounterRejected>())).Add(new EncounterRejected(EncounterMatch, c));
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}