PKHeX/PKHeX.Core/Saves/Encryption/MemeCrypto/MemeCrypto.cs

180 lines
6.6 KiB
C#
Raw Normal View History

using System;
using System.Security.Cryptography;
using static System.Buffers.Binary.BinaryPrimitives;
namespace PKHeX.Core;
/// <summary>
/// MemeCrypto V1 - The Original Series
/// </summary>
/// <remarks>
/// A variant of <see cref="SaveFile"/> encryption and obfuscation used in <see cref="GameVersion.Gen7"/>.
/// <br> The save file stores a dedicated block to contain a hash of the savedata, computed when the block is zeroed. </br>
/// <br> This signing logic is reused for other authentication; refer to <see cref="MemeKeyIndex"/>. </br>
/// <br> The save file first computes a SHA256 Hash over the block checksum region.
/// The logic then applies a SHA1 hash over the SHA256 hash result, encrypts it with a <see cref="MemeKey"/>, and signs it with an RSA private key in a non-straightforward manner. </br>
/// </remarks>
public static class MemeCrypto
{
private const uint POKE = 0x454B4F50;
public static bool VerifyMemePOKE(ReadOnlySpan<byte> input, out byte[] output)
{
if (input.Length < MemeKey.SignatureLength)
throw new ArgumentException("Invalid POKE buffer!");
var memeLen = input.Length - 8;
var memeIndex = MemeKeyIndex.PokedexAndSaveFile;
for (var i = input.Length - 8; i >= 0; i--)
{
if (ReadUInt32LittleEndian(input[i..]) != POKE)
continue;
var keyIndex = ReadInt32LittleEndian(input[(i+4)..]);
if (!MemeKey.IsValidPokeKeyIndex(keyIndex))
continue;
memeLen = i;
memeIndex = (MemeKeyIndex)keyIndex;
break;
}
foreach (var len in new[] { memeLen, memeLen - 2 }) // Account for Pokédex QR Edge case
{
if (VerifyMemeData(input[..len], out output, memeIndex))
return true;
if (VerifyMemeData(input[..len], out output, MemeKeyIndex.PokedexAndSaveFile))
return true;
}
output = Array.Empty<byte>();
return false;
}
public static bool VerifyMemeData(ReadOnlySpan<byte> input, out byte[] output)
{
foreach (MemeKeyIndex keyIndex in Enum.GetValues(typeof(MemeKeyIndex)))
{
if (VerifyMemeData(input, out output, keyIndex))
return true;
}
output = Array.Empty<byte>();
return false;
}
public static bool VerifyMemeData(ReadOnlySpan<byte> input, out byte[] output, MemeKeyIndex keyIndex)
{
if (input.Length < MemeKey.SignatureLength)
{
output = Array.Empty<byte>();
return false;
}
var key = new MemeKey(keyIndex);
Span<byte> sigBuffer = stackalloc byte[MemeKey.SignatureLength];
var inputSig = input[^MemeKey.SignatureLength..];
key.RsaPublic(inputSig, sigBuffer);
output = input.ToArray();
if (DecryptCompare(output, sigBuffer, key))
return true;
sigBuffer[0x0] |= 0x80;
output = input.ToArray();
if (DecryptCompare(output, sigBuffer, key))
return true;
output = Array.Empty<byte>();
return false;
}
private static bool DecryptCompare(Span<byte> output, ReadOnlySpan<byte> sigBuffer, MemeKey key)
{
sigBuffer.CopyTo(output[^MemeKey.SignatureLength..]);
key.AesDecrypt(output);
// Check for 8-byte equality.
Span<byte> hash = stackalloc byte[SHA1.HashSizeInBytes];
SHA1.HashData(output[..^8], hash);
return hash[..8].SequenceEqual(output[^8..]);
}
public static bool VerifyMemeData(ReadOnlySpan<byte> input, out byte[] output, int offset, int length, MemeKeyIndex keyIndex)
{
var data = input.Slice(offset, length);
if (VerifyMemeData(data, out output, keyIndex))
{
var newOutput = input.ToArray();
output.CopyTo(newOutput, offset);
output = newOutput;
return true;
}
output = Array.Empty<byte>();
return false;
}
public static byte[] SignMemeData(ReadOnlySpan<byte> input, MemeKeyIndex keyIndex = MemeKeyIndex.PokedexAndSaveFile)
{
var output = input.ToArray();
SignMemeDataInPlace(output, keyIndex);
return output;
}
private static void SignMemeDataInPlace(Span<byte> data, MemeKeyIndex keyIndex = MemeKeyIndex.PokedexAndSaveFile)
{
// Validate Input
if (data.Length < MemeKey.SignatureLength)
throw new ArgumentException("Cannot sign a buffer less than 0x60 bytes in size!");
var key = new MemeKey(keyIndex);
if (!key.CanResign)
throw new ArgumentException("Cannot sign with the specified key!");
// SHA1 the entire payload except for the last 8 bytes; store the first 8 bytes of hash at the end of the input.
var payload = data[..^8];
var hash = data[^8..];
Span<byte> tmp = stackalloc byte[SHA1.HashSizeInBytes];
SHA1.HashData(payload, tmp);
// Copy in the SHA1 signature
tmp[..hash.Length].CopyTo(hash);
// Perform AES operations
key.AesEncrypt(data);
var sigBuffer = data[^MemeKey.SignatureLength..];
sigBuffer[0] &= 0x7F; // chop off sign bit
key.RsaPrivate(sigBuffer, sigBuffer);
}
public const int SaveFileSignatureOffset = 0x100;
public const int SaveFileSignatureLength = 0x80;
/// <summary>
/// Resigns save data.
/// </summary>
/// <param name="span">Save file data to resign</param>
/// <returns>The resigned save data. Invalid input returns null.</returns>
public static void SignInPlace(Span<byte> span)
{
if (span.Length is not (SaveUtil.SIZE_G7SM or SaveUtil.SIZE_G7USUM))
throw new ArgumentException("Should not be using this for unsupported saves.");
var isUSUM = span.Length == SaveUtil.SIZE_G7USUM;
var ChecksumTableOffset = span.Length - 0x200;
var ChecksumSignatureLength = isUSUM ? 0x150 : 0x140;
var MemeCryptoOffset = (isUSUM ? 0x6C000 : 0x6BA00) + SaveFileSignatureOffset;
// data[0x80]. Region is initially zero when exporting (nothing set).
// Store a SHA256[0x20] hash of checksums at [..0x20].
// Compute the signature over this 0x80 region, store at [0x20..]
var sigSpan = span.Slice(MemeCryptoOffset, SaveFileSignatureLength);
var chkBlockSpan = span.Slice(ChecksumTableOffset, ChecksumSignatureLength);
SignInPlace(sigSpan, chkBlockSpan);
}
public static void SignInPlace(Span<byte> sigSpan, ReadOnlySpan<byte> chkBlockSpan)
{
SHA256.HashData(chkBlockSpan, sigSpan);
SignMemeDataInPlace(sigSpan);
}
}