/* * Copyright (c) 2020-2021 ndeadly * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "emulated_switch_controller.hpp" #include "../mcmitm_config.hpp" #include namespace ams::controller { namespace { // Factory calibration data representing analog stick ranges that span the entire 12-bit data type in x and y SwitchAnalogStickFactoryCalibration lstick_factory_calib = {0xff, 0xf7, 0x7f, 0x00, 0x08, 0x80, 0x00, 0x08, 0x80}; SwitchAnalogStickFactoryCalibration rstick_factory_calib = {0x00, 0x08, 0x80, 0x00, 0x08, 0x80, 0xff, 0xf7, 0x7f}; // Frequency in Hz rounded to nearest int // https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering/blob/master/rumble_data_table.md#frequency-table const uint16_t rumble_freq_lut[] = { 0x0029, 0x002a, 0x002b, 0x002c, 0x002d, 0x002e, 0x002f, 0x0030, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035, 0x0036, 0x0037, 0x0039, 0x003a, 0x003b, 0x003c, 0x003e, 0x003f, 0x0040, 0x0042, 0x0043, 0x0045, 0x0046, 0x0048, 0x0049, 0x004b, 0x004d, 0x004e, 0x0050, 0x0052, 0x0054, 0x0055, 0x0057, 0x0059, 0x005b, 0x005d, 0x005f, 0x0061, 0x0063, 0x0066, 0x0068, 0x006a, 0x006c, 0x006f, 0x0071, 0x0074, 0x0076, 0x0079, 0x007b, 0x007e, 0x0081, 0x0084, 0x0087, 0x0089, 0x008d, 0x0090, 0x0093, 0x0096, 0x0099, 0x009d, 0x00a0, 0x00a4, 0x00a7, 0x00ab, 0x00ae, 0x00b2, 0x00b6, 0x00ba, 0x00be, 0x00c2, 0x00c7, 0x00cb, 0x00cf, 0x00d4, 0x00d9, 0x00dd, 0x00e2, 0x00e7, 0x00ec, 0x00f1, 0x00f7, 0x00fc, 0x0102, 0x0107, 0x010d, 0x0113, 0x0119, 0x011f, 0x0125, 0x012c, 0x0132, 0x0139, 0x0140, 0x0147, 0x014e, 0x0155, 0x015d, 0x0165, 0x016c, 0x0174, 0x017d, 0x0185, 0x018d, 0x0196, 0x019f, 0x01a8, 0x01b1, 0x01bb, 0x01c5, 0x01ce, 0x01d9, 0x01e3, 0x01ee, 0x01f8, 0x0203, 0x020f, 0x021a, 0x0226, 0x0232, 0x023e, 0x024b, 0x0258, 0x0265, 0x0272, 0x0280, 0x028e, 0x029c, 0x02ab, 0x02ba, 0x02c9, 0x02d9, 0x02e9, 0x02f9, 0x030a, 0x031b, 0x032c, 0x033e, 0x0350, 0x0363, 0x0376, 0x0389, 0x039d, 0x03b1, 0x03c6, 0x03db, 0x03f1, 0x0407, 0x041d, 0x0434, 0x044c, 0x0464, 0x047d, 0x0496, 0x04af, 0x04ca, 0x04e5 }; // Floats from dekunukem repo normalised and scaled by function used by yuzu // https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering/blob/master/rumble_data_table.md#amplitude-table // https://github.com/yuzu-emu/yuzu/blob/d3a4a192fe26e251f521f0311b2d712f5db9918e/src/input_common/sdl/sdl_impl.cpp#L429 const float rumble_amp_lut_f[] = { 0.000000, 0.120576, 0.137846, 0.146006, 0.154745, 0.164139, 0.174246, 0.185147, 0.196927, 0.209703, 0.223587, 0.238723, 0.255268, 0.273420, 0.293398, 0.315462, 0.321338, 0.327367, 0.333557, 0.339913, 0.346441, 0.353145, 0.360034, 0.367112, 0.374389, 0.381870, 0.389564, 0.397476, 0.405618, 0.413996, 0.422620, 0.431501, 0.436038, 0.440644, 0.445318, 0.450062, 0.454875, 0.459764, 0.464726, 0.469763, 0.474876, 0.480068, 0.485342, 0.490694, 0.496130, 0.501649, 0.507256, 0.512950, 0.518734, 0.524609, 0.530577, 0.536639, 0.542797, 0.549055, 0.555413, 0.561872, 0.568436, 0.575106, 0.581886, 0.588775, 0.595776, 0.602892, 0.610127, 0.617482, 0.624957, 0.632556, 0.640283, 0.648139, 0.656126, 0.664248, 0.672507, 0.680906, 0.689447, 0.698135, 0.706971, 0.715957, 0.725098, 0.734398, 0.743857, 0.753481, 0.763273, 0.773235, 0.783370, 0.793684, 0.804178, 0.814858, 0.825726, 0.836787, 0.848044, 0.859502, 0.871165, 0.883035, 0.895119, 0.907420, 0.919943, 0.932693, 0.945673, 0.958889, 0.972345, 0.986048, 1.000000 }; inline void DecodeRumbleValues(const uint8_t enc[], SwitchRumbleData *dec) { uint8_t hi_freq_ind = 0x20 + (enc[0] >> 2) + ((enc[1] & 0x01) * 0x40) - 1; uint8_t hi_amp_ind = (enc[1] & 0xfe) >> 1; uint8_t lo_freq_ind = (enc[2] & 0x7f) - 1;; uint8_t lo_amp_ind = ((enc[3] - 0x40) << 1) + ((enc[2] & 0x80) >> 7); dec->high_band_freq = float(rumble_freq_lut[hi_freq_ind]); dec->high_band_amp = rumble_amp_lut_f[hi_amp_ind]; dec->low_band_freq = float(rumble_freq_lut[lo_freq_ind]); dec->low_band_amp = rumble_amp_lut_f[lo_amp_ind]; } } EmulatedSwitchController::EmulatedSwitchController(const bluetooth::Address *address) : SwitchController(address) , m_charging(false) , m_battery(BATTERY_MAX) { this->ClearControllerState(); m_colours.body = {0x32, 0x32, 0x32}; m_colours.buttons = {0xe6, 0xe6, 0xe6}; m_colours.left_grip = {0x46, 0x46, 0x46}; m_colours.right_grip = {0x46, 0x46, 0x46}; auto config = mitm::GetGlobalConfig(); m_enable_rumble = config->general.enable_rumble; }; void EmulatedSwitchController::ClearControllerState(void) { std::memset(&m_buttons, 0, sizeof(m_buttons)); m_left_stick.SetData(STICK_ZERO, STICK_ZERO); m_right_stick.SetData(STICK_ZERO, STICK_ZERO); std::memset(&m_motion_data, 0, sizeof(m_motion_data)); } Result EmulatedSwitchController::HandleIncomingReport(const bluetooth::HidReport *report) { this->UpdateControllerState(report); // Prepare Switch report s_input_report.size = sizeof(SwitchInputReport0x30) + 1; auto switch_report = reinterpret_cast(s_input_report.data); switch_report->id = 0x30; switch_report->input0x30.conn_info = 0; switch_report->input0x30.battery = m_battery | m_charging; switch_report->input0x30.buttons = m_buttons; switch_report->input0x30.left_stick = m_left_stick; switch_report->input0x30.right_stick = m_right_stick; std::memcpy(&switch_report->input0x30.motion, &m_motion_data, sizeof(m_motion_data)); this->ApplyButtonCombos(&switch_report->input0x30.buttons); switch_report->input0x30.timer = os::ConvertToTimeSpan(os::GetSystemTick()).GetMilliSeconds() & 0xff; return bluetooth::hid::report::WriteHidReportBuffer(&m_address, &s_input_report); } Result EmulatedSwitchController::HandleOutgoingReport(const bluetooth::HidReport *report) { uint8_t cmdId = report->data[0]; switch (cmdId) { case 0x01: R_TRY(this->HandleSubCmdReport(report)); break; case 0x10: R_TRY(this->HandleRumbleReport(report)); break; default: break; } return ams::ResultSuccess(); } Result EmulatedSwitchController::HandleSubCmdReport(const bluetooth::HidReport *report) { auto switch_report = reinterpret_cast(&report->data); switch (switch_report->output0x01.subcmd.id) { case SubCmd_RequestDeviceInfo: R_TRY(this->SubCmdRequestDeviceInfo(report)); break; case SubCmd_SpiFlashRead: R_TRY(this->SubCmdSpiFlashRead(report)); break; case SubCmd_SpiFlashWrite: R_TRY(this->SubCmdSpiFlashWrite(report)); break; case SubCmd_SpiSectorErase: R_TRY(this->SubCmdSpiSectorErase(report)); break; case SubCmd_SetInputReportMode: R_TRY(this->SubCmdSetInputReportMode(report)); break; case SubCmd_TriggersElapsedTime: R_TRY(this->SubCmdTriggersElapsedTime(report)); break; case SubCmd_SetShipPowerState: R_TRY(this->SubCmdSetShipPowerState(report)); break; case SubCmd_SetMcuConfig: R_TRY(this->SubCmdSetMcuConfig(report)); break; case SubCmd_SetMcuState: R_TRY(this->SubCmdSetMcuState(report)); break; case SubCmd_SetPlayerLeds: R_TRY(this->SubCmdSetPlayerLeds(report)); break; case SubCmd_SetHomeLed: R_TRY(this->SubCmdSetHomeLed(report)); break; case SubCmd_EnableImu: R_TRY(this->SubCmdEnableImu(report)); break; case SubCmd_EnableVibration: R_TRY(this->SubCmdEnableVibration(report)); break; default: break; } return ams::ResultSuccess(); } Result EmulatedSwitchController::HandleRumbleReport(const bluetooth::HidReport *report) { R_SUCCEED_IF(!m_enable_rumble); auto report_data = reinterpret_cast(report->data); SwitchRumbleData rumble_data; DecodeRumbleValues(report_data->output0x10.left_motor, &rumble_data); return this->SetVibration(&rumble_data); } Result EmulatedSwitchController::SubCmdRequestDeviceInfo(const bluetooth::HidReport *report) { const SwitchSubcommandResponse response = { .ack = 0x82, .id = SubCmd_RequestDeviceInfo, .device_info = { .fw_ver = { .major = 0x03, .minor = 0x48 }, .type = 0x03, ._unk0 = 0x02, .address = m_address, ._unk1 = 0x01, ._unk2 = 0x02 } }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdSpiFlashRead(const bluetooth::HidReport *report) { // These are read from official Pro Controller // @ 0x00006000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff <= Serial // @ 0x00006050: 32 32 32 ff ff ff ff ff ff ff ff ff <= RGB colours (body, buttons, left grip, right grip) // @ 0x00006080: 50 fd 00 00 c6 0f 0f 30 61 ae 90 d9 d4 14 54 41 15 54 c7 79 9c 33 36 63 <= Factory Sensor and Stick device parameters // @ 0x00006098: 0f 30 61 ae 90 d9 d4 14 54 41 15 54 c7 79 9c 33 36 63 <= Stick device parameters 2. Normally the same with 1, even in Pro Contr. // @ 0x00008010: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff <= User Analog sticks calibration // @ 0x0000603d: e6 a5 67 1a 58 78 50 56 60 1a f8 7f 20 c6 63 d5 15 5e ff 32 32 32 ff ff ff <= Analog stick factory calibration + face/button colours // @ 0x00006020: 64 ff 33 00 b8 01 00 40 00 40 00 40 17 00 d7 ff bd ff 3b 34 3b 34 3b 34 <= 6-Axis motion sensor Factory calibration auto switch_report = reinterpret_cast(&report->data); uint32_t read_addr = switch_report->output0x01.subcmd.spi_flash_read.address; uint8_t read_size = switch_report->output0x01.subcmd.spi_flash_read.size; SwitchSubcommandResponse response = { .ack = 0x90, .id = SubCmd_SpiFlashRead, .spi_flash_read = { .address = read_addr, .size = read_size } }; if (read_addr == 0x6050) { std::memcpy(response.spi_flash_read.data, &m_colours, sizeof(m_colours)); // Set controller colours } else if (read_addr == 0x603d) { const struct { SwitchAnalogStickFactoryCalibration lstick_factory_calib; SwitchAnalogStickFactoryCalibration rstick_factory_calib; uint8_t unused; RGBColour body; RGBColour buttons; } data = { lstick_factory_calib, rstick_factory_calib, 0xff, m_colours.body, m_colours.buttons }; std::memcpy(response.spi_flash_read.data, &data, sizeof(data)); } else { std::memset(response.spi_flash_read.data, 0xff, read_size); // Console doesn't seem to mind if response is uninitialised data (0xff) } return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdSpiFlashWrite(const bluetooth::HidReport *report) { const SwitchSubcommandResponse response = { .ack = 0x80, .id = SubCmd_SpiFlashWrite, .spi_flash_write = { .status = 0x01 } }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdSpiSectorErase(const bluetooth::HidReport *report) { const SwitchSubcommandResponse response = { .ack = 0x80, .id = SubCmd_SpiSectorErase, .spi_flash_write = { .status = 0x01 } }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdSetInputReportMode(const bluetooth::HidReport *report) { const SwitchSubcommandResponse response = { .ack = 0x80, .id = SubCmd_SetInputReportMode }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdTriggersElapsedTime(const bluetooth::HidReport *report) { const SwitchSubcommandResponse response = { .ack = 0x83, .id = SubCmd_TriggersElapsedTime }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdSetShipPowerState(const bluetooth::HidReport *report) { const SwitchSubcommandResponse response = { .ack = 0x80, .id = SubCmd_SetShipPowerState, .set_ship_power_state = { .enabled = false } }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdSetMcuConfig(const bluetooth::HidReport *report) { const SwitchSubcommandResponse response = { .ack = 0xa0, .id = SubCmd_SetMcuConfig, .data = {0x01, 0x00, 0xff, 0x00, 0x03, 0x00, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x5c} }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdSetMcuState(const bluetooth::HidReport *report) { const SwitchSubcommandResponse response = { .ack = 0x80, .id = SubCmd_SetMcuState }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdSetPlayerLeds(const bluetooth::HidReport *report) { const uint8_t *subCmd = &report->data[10]; uint8_t led_mask = subCmd[1]; R_TRY(this->SetPlayerLed(led_mask)); const SwitchSubcommandResponse response = { .ack = 0x80, .id = SubCmd_SetPlayerLeds }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdSetHomeLed(const bluetooth::HidReport *report) { const SwitchSubcommandResponse response = { .ack = 0x80, .id = SubCmd_SetHomeLed }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdEnableImu(const bluetooth::HidReport *report) { const SwitchSubcommandResponse response = { .ack = 0x80, .id = SubCmd_EnableImu }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::SubCmdEnableVibration(const bluetooth::HidReport *report) { const SwitchSubcommandResponse response = { .ack = 0x80, .id = SubCmd_EnableVibration }; return this->FakeSubCmdResponse(&response); } Result EmulatedSwitchController::FakeSubCmdResponse(const SwitchSubcommandResponse *response) { s_input_report.size = sizeof(SwitchInputReport0x21) + 1; auto report_data = reinterpret_cast(s_input_report.data); report_data->id = 0x21; report_data->input0x21.conn_info = 0; report_data->input0x21.battery = m_battery | m_charging; report_data->input0x21.buttons = m_buttons; report_data->input0x21.left_stick = m_left_stick; report_data->input0x21.right_stick = m_right_stick; report_data->input0x21.vibrator = 0; std::memcpy(&report_data->input0x21.response, response, sizeof(SwitchSubcommandResponse)); report_data->input0x21.timer = os::ConvertToTimeSpan(os::GetSystemTick()).GetMilliSeconds() & 0xff; //Write a fake response into the report buffer return bluetooth::hid::report::WriteHidReportBuffer(&m_address, &s_input_report); } }