mirror of
https://github.com/gchq/CyberChef
synced 2025-01-10 11:38:46 +00:00
1028 lines
30 KiB
JavaScript
Executable file
1028 lines
30 KiB
JavaScript
Executable file
import Utils from "../Utils.js";
|
|
import CryptoJS from "crypto-js";
|
|
import forge from "imports-loader?jQuery=>null!node-forge/dist/forge.min.js";
|
|
import {blowfish as Blowfish} from "sladex-blowfish";
|
|
|
|
|
|
/**
|
|
* Cipher operations.
|
|
*
|
|
* @author n1474335 [n1474335@gmail.com]
|
|
* @copyright Crown Copyright 2016
|
|
* @license Apache-2.0
|
|
*
|
|
* @namespace
|
|
*/
|
|
const Cipher = {
|
|
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
IO_FORMAT1: ["Hex", "UTF8", "Latin1", "Base64"],
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
IO_FORMAT2: ["UTF8", "Latin1", "Hex", "Base64"],
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
IO_FORMAT3: ["Raw", "Hex"],
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
IO_FORMAT4: ["Hex", "Raw"],
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
AES_MODES: ["CBC", "CFB", "OFB", "CTR", "GCM", "ECB"],
|
|
|
|
/**
|
|
* AES Encrypt operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runAesEnc: function (input, args) {
|
|
const key = Utils.convertToByteArray(args[0].string, args[0].option),
|
|
iv = Utils.convertToByteArray(args[1].string, args[1].option),
|
|
mode = args[2],
|
|
inputType = args[3],
|
|
outputType = args[4];
|
|
|
|
if ([16, 24, 32].indexOf(key.length) < 0) {
|
|
return `Invalid key length: ${key.length} bytes
|
|
|
|
The following algorithms will be used based on the size of the key:
|
|
16 bytes = AES-128
|
|
24 bytes = AES-192
|
|
32 bytes = AES-256`;
|
|
}
|
|
|
|
input = Utils.convertToByteString(input, inputType);
|
|
|
|
const cipher = forge.cipher.createCipher("AES-" + mode, key);
|
|
cipher.start({iv: iv});
|
|
cipher.update(forge.util.createBuffer(input));
|
|
cipher.finish();
|
|
|
|
if (outputType === "Hex") {
|
|
if (mode === "GCM") {
|
|
return cipher.output.toHex() + "\n\n" +
|
|
"Tag: " + cipher.mode.tag.toHex();
|
|
}
|
|
return cipher.output.toHex();
|
|
} else {
|
|
if (mode === "GCM") {
|
|
return cipher.output.getBytes() + "\n\n" +
|
|
"Tag: " + cipher.mode.tag.getBytes();
|
|
}
|
|
return cipher.output.getBytes();
|
|
}
|
|
},
|
|
|
|
|
|
/**
|
|
* AES Decrypt operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runAesDec: function (input, args) {
|
|
const key = Utils.convertToByteArray(args[0].string, args[0].option),
|
|
iv = Utils.convertToByteArray(args[1].string, args[1].option),
|
|
mode = args[2],
|
|
inputType = args[3],
|
|
outputType = args[4],
|
|
gcmTag = Utils.convertToByteString(args[5].string, args[5].option);
|
|
|
|
if ([16, 24, 32].indexOf(key.length) < 0) {
|
|
return `Invalid key length: ${key.length} bytes
|
|
|
|
The following algorithms will be used based on the size of the key:
|
|
16 bytes = AES-128
|
|
24 bytes = AES-192
|
|
32 bytes = AES-256`;
|
|
}
|
|
|
|
input = Utils.convertToByteString(input, inputType);
|
|
|
|
const decipher = forge.cipher.createDecipher("AES-" + mode, key);
|
|
decipher.start({
|
|
iv: iv,
|
|
tag: gcmTag
|
|
});
|
|
decipher.update(forge.util.createBuffer(input));
|
|
const result = decipher.finish();
|
|
|
|
if (result) {
|
|
return outputType === "Hex" ? decipher.output.toHex() : decipher.output.getBytes();
|
|
} else {
|
|
return "Unable to decrypt input with these parameters.";
|
|
}
|
|
},
|
|
|
|
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
DES_MODES: ["CBC", "CFB", "OFB", "CTR", "ECB"],
|
|
|
|
/**
|
|
* DES Encrypt operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runDesEnc: function (input, args) {
|
|
const key = Utils.convertToByteString(args[0].string, args[0].option),
|
|
iv = Utils.convertToByteArray(args[1].string, args[1].option),
|
|
mode = args[2],
|
|
inputType = args[3],
|
|
outputType = args[4];
|
|
|
|
if (key.length !== 8) {
|
|
return `Invalid key length: ${key.length} bytes
|
|
|
|
DES uses a key length of 8 bytes (64 bits).
|
|
Triple DES uses a key length of 24 bytes (192 bits).`;
|
|
}
|
|
|
|
input = Utils.convertToByteString(input, inputType);
|
|
|
|
const cipher = forge.cipher.createCipher("DES-" + mode, key);
|
|
cipher.start({iv: iv});
|
|
cipher.update(forge.util.createBuffer(input));
|
|
cipher.finish();
|
|
|
|
return outputType === "Hex" ? cipher.output.toHex() : cipher.output.getBytes();
|
|
},
|
|
|
|
|
|
/**
|
|
* DES Decrypt operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runDesDec: function (input, args) {
|
|
const key = Utils.convertToByteString(args[0].string, args[0].option),
|
|
iv = Utils.convertToByteArray(args[1].string, args[1].option),
|
|
mode = args[2],
|
|
inputType = args[3],
|
|
outputType = args[4];
|
|
|
|
if (key.length !== 8) {
|
|
return `Invalid key length: ${key.length} bytes
|
|
|
|
DES uses a key length of 8 bytes (64 bits).
|
|
Triple DES uses a key length of 24 bytes (192 bits).`;
|
|
}
|
|
|
|
input = Utils.convertToByteString(input, inputType);
|
|
|
|
const decipher = forge.cipher.createDecipher("DES-" + mode, key);
|
|
decipher.start({iv: iv});
|
|
decipher.update(forge.util.createBuffer(input));
|
|
const result = decipher.finish();
|
|
|
|
if (result) {
|
|
return outputType === "Hex" ? decipher.output.toHex() : decipher.output.getBytes();
|
|
} else {
|
|
return "Unable to decrypt input with these parameters.";
|
|
}
|
|
},
|
|
|
|
|
|
/**
|
|
* Triple DES Encrypt operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runTripleDesEnc: function (input, args) {
|
|
const key = Utils.convertToByteString(args[0].string, args[0].option),
|
|
iv = Utils.convertToByteArray(args[1].string, args[1].option),
|
|
mode = args[2],
|
|
inputType = args[3],
|
|
outputType = args[4];
|
|
|
|
if (key.length !== 24) {
|
|
return `Invalid key length: ${key.length} bytes
|
|
|
|
Triple DES uses a key length of 24 bytes (192 bits).
|
|
DES uses a key length of 8 bytes (64 bits).`;
|
|
}
|
|
|
|
input = Utils.convertToByteString(input, inputType);
|
|
|
|
const cipher = forge.cipher.createCipher("3DES-" + mode, key);
|
|
cipher.start({iv: iv});
|
|
cipher.update(forge.util.createBuffer(input));
|
|
cipher.finish();
|
|
|
|
return outputType === "Hex" ? cipher.output.toHex() : cipher.output.getBytes();
|
|
},
|
|
|
|
|
|
/**
|
|
* Triple DES Decrypt operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runTripleDesDec: function (input, args) {
|
|
const key = Utils.convertToByteString(args[0].string, args[0].option),
|
|
iv = Utils.convertToByteArray(args[1].string, args[1].option),
|
|
mode = args[2],
|
|
inputType = args[3],
|
|
outputType = args[4];
|
|
|
|
if (key.length !== 24) {
|
|
return `Invalid key length: ${key.length} bytes
|
|
|
|
Triple DES uses a key length of 24 bytes (192 bits).
|
|
DES uses a key length of 8 bytes (64 bits).`;
|
|
}
|
|
|
|
input = Utils.convertToByteString(input, inputType);
|
|
|
|
const decipher = forge.cipher.createDecipher("3DES-" + mode, key);
|
|
decipher.start({iv: iv});
|
|
decipher.update(forge.util.createBuffer(input));
|
|
const result = decipher.finish();
|
|
|
|
if (result) {
|
|
return outputType === "Hex" ? decipher.output.toHex() : decipher.output.getBytes();
|
|
} else {
|
|
return "Unable to decrypt input with these parameters.";
|
|
}
|
|
},
|
|
|
|
|
|
/**
|
|
* RC2 Encrypt operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runRc2Enc: function (input, args) {
|
|
const key = Utils.convertToByteString(args[0].string, args[0].option),
|
|
iv = Utils.convertToByteString(args[1].string, args[1].option),
|
|
inputType = args[2],
|
|
outputType = args[3],
|
|
cipher = forge.rc2.createEncryptionCipher(key);
|
|
|
|
input = Utils.convertToByteString(input, inputType);
|
|
|
|
cipher.start(iv || null);
|
|
cipher.update(forge.util.createBuffer(input));
|
|
cipher.finish();
|
|
|
|
return outputType === "Hex" ? cipher.output.toHex() : cipher.output.getBytes();
|
|
},
|
|
|
|
|
|
/**
|
|
* RC2 Decrypt operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runRc2Dec: function (input, args) {
|
|
const key = Utils.convertToByteString(args[0].string, args[0].option),
|
|
iv = Utils.convertToByteString(args[1].string, args[1].option),
|
|
inputType = args[2],
|
|
outputType = args[3],
|
|
decipher = forge.rc2.createDecryptionCipher(key);
|
|
|
|
input = Utils.convertToByteString(input, inputType);
|
|
|
|
decipher.start(iv || null);
|
|
decipher.update(forge.util.createBuffer(input));
|
|
decipher.finish();
|
|
|
|
return outputType === "Hex" ? decipher.output.toHex() : decipher.output.getBytes();
|
|
},
|
|
|
|
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
BLOWFISH_MODES: ["CBC", "PCBC", "CFB", "OFB", "CTR", "ECB"],
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
BLOWFISH_OUTPUT_TYPES: ["Hex", "Base64", "Raw"],
|
|
|
|
/**
|
|
* Lookup table for Blowfish output types.
|
|
*
|
|
* @private
|
|
*/
|
|
_BLOWFISH_OUTPUT_TYPE_LOOKUP: {
|
|
Base64: 0, Hex: 1, String: 2, Raw: 3
|
|
},
|
|
/**
|
|
* Lookup table for Blowfish modes.
|
|
*
|
|
* @private
|
|
*/
|
|
_BLOWFISH_MODE_LOOKUP: {
|
|
ECB: 0, CBC: 1, PCBC: 2, CFB: 3, OFB: 4, CTR: 5
|
|
},
|
|
|
|
/**
|
|
* Blowfish Encrypt operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runBlowfishEnc: function (input, args) {
|
|
const key = Utils.convertToByteString(args[0].string, args[0].option),
|
|
iv = Utils.convertToByteArray(args[1].string, args[1].option),
|
|
mode = args[2],
|
|
inputType = args[3],
|
|
outputType = args[4];
|
|
|
|
if (key.length === 0) return "Enter a key";
|
|
|
|
input = Utils.convertToByteString(input, inputType);
|
|
|
|
Blowfish.setIV(Utils.toBase64(iv), 0);
|
|
|
|
const enc = Blowfish.encrypt(input, key, {
|
|
outputType: Cipher._BLOWFISH_OUTPUT_TYPE_LOOKUP[outputType],
|
|
cipherMode: Cipher._BLOWFISH_MODE_LOOKUP[mode]
|
|
});
|
|
|
|
return outputType === "Raw" ? Utils.byteArrayToChars(enc) : enc ;
|
|
},
|
|
|
|
|
|
/**
|
|
* Blowfish Decrypt operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runBlowfishDec: function (input, args) {
|
|
const key = Utils.convertToByteString(args[0].string, args[0].option),
|
|
iv = Utils.convertToByteArray(args[1].string, args[1].option),
|
|
mode = args[2],
|
|
inputType = args[3],
|
|
outputType = args[4];
|
|
|
|
if (key.length === 0) return "Enter a key";
|
|
|
|
input = inputType === "Raw" ? Utils.strToByteArray(input) : input;
|
|
|
|
Blowfish.setIV(Utils.toBase64(iv), 0);
|
|
|
|
const result = Blowfish.decrypt(input, key, {
|
|
outputType: Cipher._BLOWFISH_OUTPUT_TYPE_LOOKUP[inputType], // This actually means inputType. The library is weird.
|
|
cipherMode: Cipher._BLOWFISH_MODE_LOOKUP[mode]
|
|
});
|
|
|
|
return outputType === "Hex" ? Utils.toHexFast(Utils.strToByteArray(result)) : result;
|
|
},
|
|
|
|
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
KDF_KEY_SIZE: 128,
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
KDF_ITERATIONS: 1,
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
HASHERS: ["SHA1", "SHA256", "SHA384", "SHA512", "MD5"],
|
|
|
|
/**
|
|
* Derive PBKDF2 key operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runPbkdf2: function (input, args) {
|
|
const passphrase = Utils.convertToByteString(args[0].string, args[0].option),
|
|
keySize = args[1],
|
|
iterations = args[2],
|
|
hasher = args[3],
|
|
salt = Utils.convertToByteString(args[4].string, args[4].option) ||
|
|
forge.random.getBytesSync(keySize),
|
|
derivedKey = forge.pkcs5.pbkdf2(passphrase, salt, iterations, keySize / 8, hasher.toLowerCase());
|
|
|
|
return forge.util.bytesToHex(derivedKey);
|
|
},
|
|
|
|
|
|
/**
|
|
* Derive EVP key operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runEvpkdf: function (input, args) {
|
|
const passphrase = Utils.convertToByteString(args[0].string, args[0].option),
|
|
keySize = args[1] / 32,
|
|
iterations = args[2],
|
|
hasher = args[3],
|
|
salt = Utils.convertToByteString(args[4].string, args[4].option),
|
|
key = CryptoJS.EvpKDF(passphrase, salt, {
|
|
keySize: keySize,
|
|
hasher: CryptoJS.algo[hasher],
|
|
iterations: iterations,
|
|
});
|
|
|
|
return key.toString(CryptoJS.enc.Hex);
|
|
},
|
|
|
|
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
RC4_KEY_FORMAT: ["UTF8", "UTF16", "UTF16LE", "UTF16BE", "Latin1", "Hex", "Base64"],
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
CJS_IO_FORMAT: ["Latin1", "UTF8", "UTF16", "UTF16LE", "UTF16BE", "Hex", "Base64"],
|
|
|
|
|
|
/**
|
|
* RC4 operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runRc4: function (input, args) {
|
|
let message = Cipher._format[args[1]].parse(input),
|
|
passphrase = Cipher._format[args[0].option].parse(args[0].string),
|
|
encrypted = CryptoJS.RC4.encrypt(message, passphrase);
|
|
|
|
return encrypted.ciphertext.toString(Cipher._format[args[2]]);
|
|
},
|
|
|
|
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
RC4DROP_BYTES: 768,
|
|
|
|
/**
|
|
* RC4 Drop operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runRc4drop: function (input, args) {
|
|
let message = Cipher._format[args[1]].parse(input),
|
|
passphrase = Cipher._format[args[0].option].parse(args[0].string),
|
|
drop = args[3],
|
|
encrypted = CryptoJS.RC4Drop.encrypt(message, passphrase, { drop: drop });
|
|
|
|
return encrypted.ciphertext.toString(Cipher._format[args[2]]);
|
|
},
|
|
|
|
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
PRNG_BYTES: 32,
|
|
PRNG_OUTPUT: ["Hex", "Number", "Byte array", "Raw"],
|
|
|
|
/**
|
|
* Pseudo-Random Number Generator operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runPRNG: function(input, args) {
|
|
const numBytes = args[0],
|
|
outputAs = args[1];
|
|
|
|
let bytes;
|
|
|
|
if (ENVIRONMENT_IS_WORKER() && self.crypto) {
|
|
bytes = self.crypto.getRandomValues(new Uint8Array(numBytes));
|
|
bytes = Utils.arrayBufferToStr(bytes.buffer);
|
|
} else {
|
|
bytes = forge.random.getBytesSync(numBytes);
|
|
}
|
|
|
|
let value = 0,
|
|
i;
|
|
|
|
switch (outputAs) {
|
|
case "Hex":
|
|
return forge.util.bytesToHex(bytes);
|
|
case "Number":
|
|
for (i = bytes.length - 1; i >= 0; i--) {
|
|
value = (value * 256) + bytes.charCodeAt(i);
|
|
}
|
|
return value.toString();
|
|
case "Byte array":
|
|
return JSON.stringify(Utils.strToCharcode(bytes));
|
|
case "Raw":
|
|
default:
|
|
return bytes;
|
|
}
|
|
},
|
|
|
|
|
|
/**
|
|
* Vigenère Encode operation.
|
|
*
|
|
* @author Matt C [matt@artemisbot.uk]
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runVigenereEnc: function (input, args) {
|
|
let alphabet = "abcdefghijklmnopqrstuvwxyz",
|
|
key = args[0].toLowerCase(),
|
|
output = "",
|
|
fail = 0,
|
|
keyIndex,
|
|
msgIndex,
|
|
chr;
|
|
|
|
if (!key) return "No key entered";
|
|
if (!/^[a-zA-Z]+$/.test(key)) return "The key must consist only of letters";
|
|
|
|
for (let i = 0; i < input.length; i++) {
|
|
if (alphabet.indexOf(input[i]) >= 0) {
|
|
// Get the corresponding character of key for the current letter, accounting
|
|
// for chars not in alphabet
|
|
chr = key[(i - fail) % key.length];
|
|
// Get the location in the vigenere square of the key char
|
|
keyIndex = alphabet.indexOf(chr);
|
|
// Get the location in the vigenere square of the message char
|
|
msgIndex = alphabet.indexOf(input[i]);
|
|
// Get the encoded letter by finding the sum of indexes modulo 26 and finding
|
|
// the letter corresponding to that
|
|
output += alphabet[(keyIndex + msgIndex) % 26];
|
|
} else if (alphabet.indexOf(input[i].toLowerCase()) >= 0) {
|
|
chr = key[(i - fail) % key.length].toLowerCase();
|
|
keyIndex = alphabet.indexOf(chr);
|
|
msgIndex = alphabet.indexOf(input[i].toLowerCase());
|
|
output += alphabet[(keyIndex + msgIndex) % 26].toUpperCase();
|
|
} else {
|
|
output += input[i];
|
|
fail++;
|
|
}
|
|
}
|
|
|
|
return output;
|
|
},
|
|
|
|
|
|
/**
|
|
* Vigenère Decode operation.
|
|
*
|
|
* @author Matt C [matt@artemisbot.uk]
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runVigenereDec: function (input, args) {
|
|
let alphabet = "abcdefghijklmnopqrstuvwxyz",
|
|
key = args[0].toLowerCase(),
|
|
output = "",
|
|
fail = 0,
|
|
keyIndex,
|
|
msgIndex,
|
|
chr;
|
|
|
|
if (!key) return "No key entered";
|
|
if (!/^[a-zA-Z]+$/.test(key)) return "The key must consist only of letters";
|
|
|
|
for (let i = 0; i < input.length; i++) {
|
|
if (alphabet.indexOf(input[i]) >= 0) {
|
|
chr = key[(i - fail) % key.length];
|
|
keyIndex = alphabet.indexOf(chr);
|
|
msgIndex = alphabet.indexOf(input[i]);
|
|
// Subtract indexes from each other, add 26 just in case the value is negative,
|
|
// modulo to remove if neccessary
|
|
output += alphabet[(msgIndex - keyIndex + alphabet.length) % 26];
|
|
} else if (alphabet.indexOf(input[i].toLowerCase()) >= 0) {
|
|
chr = key[(i - fail) % key.length].toLowerCase();
|
|
keyIndex = alphabet.indexOf(chr);
|
|
msgIndex = alphabet.indexOf(input[i].toLowerCase());
|
|
output += alphabet[(msgIndex + alphabet.length - keyIndex) % 26].toUpperCase();
|
|
} else {
|
|
output += input[i];
|
|
fail++;
|
|
}
|
|
}
|
|
|
|
return output;
|
|
},
|
|
|
|
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
AFFINE_A: 1,
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
AFFINE_B: 0,
|
|
|
|
/**
|
|
* Affine Cipher Encode operation.
|
|
*
|
|
* @author Matt C [matt@artemisbot.uk]
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runAffineEnc: function (input, args) {
|
|
let alphabet = "abcdefghijklmnopqrstuvwxyz",
|
|
a = args[0],
|
|
b = args[1],
|
|
output = "";
|
|
|
|
if (!/^\+?(0|[1-9]\d*)$/.test(a) || !/^\+?(0|[1-9]\d*)$/.test(b)) {
|
|
return "The values of a and b can only be integers.";
|
|
}
|
|
|
|
for (let i = 0; i < input.length; i++) {
|
|
if (alphabet.indexOf(input[i]) >= 0) {
|
|
// Uses the affine function ax+b % m = y (where m is length of the alphabet)
|
|
output += alphabet[((a * alphabet.indexOf(input[i])) + b) % 26];
|
|
} else if (alphabet.indexOf(input[i].toLowerCase()) >= 0) {
|
|
// Same as above, accounting for uppercase
|
|
output += alphabet[((a * alphabet.indexOf(input[i].toLowerCase())) + b) % 26].toUpperCase();
|
|
} else {
|
|
// Non-alphabetic characters
|
|
output += input[i];
|
|
}
|
|
}
|
|
return output;
|
|
},
|
|
|
|
|
|
/**
|
|
* Affine Cipher Decode operation.
|
|
*
|
|
* @author Matt C [matt@artemisbot.uk]
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runAffineDec: function (input, args) {
|
|
let alphabet = "abcdefghijklmnopqrstuvwxyz",
|
|
a = args[0],
|
|
b = args[1],
|
|
output = "",
|
|
aModInv;
|
|
|
|
if (!/^\+?(0|[1-9]\d*)$/.test(a) || !/^\+?(0|[1-9]\d*)$/.test(b)) {
|
|
return "The values of a and b can only be integers.";
|
|
}
|
|
|
|
if (Utils.gcd(a, 26) !== 1) {
|
|
return "The value of a must be coprime to 26.";
|
|
}
|
|
|
|
// Calculates modular inverse of a
|
|
aModInv = Utils.modInv(a, 26);
|
|
|
|
for (let i = 0; i < input.length; i++) {
|
|
if (alphabet.indexOf(input[i]) >= 0) {
|
|
// Uses the affine decode function (y-b * A') % m = x (where m is length of the alphabet and A' is modular inverse)
|
|
output += alphabet[Utils.mod((alphabet.indexOf(input[i]) - b) * aModInv, 26)];
|
|
} else if (alphabet.indexOf(input[i].toLowerCase()) >= 0) {
|
|
// Same as above, accounting for uppercase
|
|
output += alphabet[Utils.mod((alphabet.indexOf(input[i].toLowerCase()) - b) * aModInv, 26)].toUpperCase();
|
|
} else {
|
|
// Non-alphabetic characters
|
|
output += input[i];
|
|
}
|
|
}
|
|
return output;
|
|
},
|
|
|
|
|
|
/**
|
|
* Atbash Cipher Encode operation.
|
|
*
|
|
* @author Matt C [matt@artemisbot.uk]
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runAtbash: function (input, args) {
|
|
return Cipher.runAffineEnc(input, [25, 25]);
|
|
},
|
|
|
|
|
|
/**
|
|
* Generates a polybius square for the given keyword
|
|
*
|
|
* @private
|
|
* @author Matt C [matt@artemisbot.uk]
|
|
* @param {string} keyword - Must be upper case
|
|
* @returns {string}
|
|
*/
|
|
_genPolybiusSquare: function (keyword) {
|
|
const alpha = "ABCDEFGHIKLMNOPQRSTUVWXYZ";
|
|
const polArray = `${keyword}${alpha}`.split("").unique();
|
|
let polybius = [];
|
|
|
|
for (let i = 0; i < 5; i++) {
|
|
polybius[i] = polArray.slice(i*5, i*5 + 5);
|
|
}
|
|
|
|
return polybius;
|
|
},
|
|
|
|
/**
|
|
* Bifid Cipher Encode operation
|
|
*
|
|
* @author Matt C [matt@artemisbot.uk]
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runBifidEnc: function (input, args) {
|
|
const keywordStr = args[0].toUpperCase().replace("J", "I"),
|
|
keyword = keywordStr.split("").unique(),
|
|
alpha = "ABCDEFGHIKLMNOPQRSTUVWXYZ";
|
|
|
|
let output = "",
|
|
xCo = [],
|
|
yCo = [],
|
|
structure = [],
|
|
count = 0;
|
|
|
|
if (keyword.length > 25)
|
|
return "The alphabet keyword must be less than 25 characters.";
|
|
|
|
if (!/^[a-zA-Z]+$/.test(keywordStr) && keyword.length > 0)
|
|
return "The key must consist only of letters";
|
|
|
|
const polybius = Cipher._genPolybiusSquare(keywordStr);
|
|
|
|
input.replace("J", "I").split("").forEach(letter => {
|
|
let alpInd = alpha.split("").indexOf(letter.toLocaleUpperCase()) >= 0,
|
|
polInd;
|
|
|
|
if (alpInd) {
|
|
for (let i = 0; i < 5; i++) {
|
|
polInd = polybius[i].indexOf(letter.toLocaleUpperCase());
|
|
if (polInd >= 0) {
|
|
xCo.push(polInd);
|
|
yCo.push(i);
|
|
}
|
|
}
|
|
|
|
if (alpha.split("").indexOf(letter) >= 0) {
|
|
structure.push(true);
|
|
} else if (alpInd) {
|
|
structure.push(false);
|
|
}
|
|
} else {
|
|
structure.push(letter);
|
|
}
|
|
});
|
|
|
|
const trans = `${yCo.join("")}${xCo.join("")}`;
|
|
|
|
structure.forEach(pos => {
|
|
if (typeof pos === "boolean") {
|
|
let coords = trans.substr(2*count, 2).split("");
|
|
|
|
output += pos ?
|
|
polybius[coords[0]][coords[1]] :
|
|
polybius[coords[0]][coords[1]].toLocaleLowerCase();
|
|
count++;
|
|
} else {
|
|
output += pos;
|
|
}
|
|
});
|
|
|
|
return output;
|
|
},
|
|
|
|
/**
|
|
* Bifid Cipher Decode operation
|
|
*
|
|
* @author Matt C [matt@artemisbot.uk]
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runBifidDec: function (input, args) {
|
|
const keywordStr = args[0].toUpperCase().replace("J", "I"),
|
|
keyword = keywordStr.split("").unique(),
|
|
alpha = "ABCDEFGHIKLMNOPQRSTUVWXYZ";
|
|
|
|
let output = "",
|
|
structure = [],
|
|
count = 0,
|
|
trans = "";
|
|
|
|
if (keyword.length > 25)
|
|
return "The alphabet keyword must be less than 25 characters.";
|
|
|
|
if (!/^[a-zA-Z]+$/.test(keywordStr) && keyword.length > 0)
|
|
return "The key must consist only of letters";
|
|
|
|
const polybius = Cipher._genPolybiusSquare(keywordStr);
|
|
|
|
input.replace("J", "I").split("").forEach((letter) => {
|
|
let alpInd = alpha.split("").indexOf(letter.toLocaleUpperCase()) >= 0,
|
|
polInd;
|
|
|
|
if (alpInd) {
|
|
for (let i = 0; i < 5; i++) {
|
|
polInd = polybius[i].indexOf(letter.toLocaleUpperCase());
|
|
if (polInd >= 0) {
|
|
trans += `${i}${polInd}`;
|
|
}
|
|
}
|
|
|
|
if (alpha.split("").indexOf(letter) >= 0) {
|
|
structure.push(true);
|
|
} else if (alpInd) {
|
|
structure.push(false);
|
|
}
|
|
} else {
|
|
structure.push(letter);
|
|
}
|
|
});
|
|
|
|
structure.forEach(pos => {
|
|
if (typeof pos === "boolean") {
|
|
let coords = [trans[count], trans[count+trans.length/2]];
|
|
|
|
output += pos ?
|
|
polybius[coords[0]][coords[1]] :
|
|
polybius[coords[0]][coords[1]].toLocaleLowerCase();
|
|
count++;
|
|
} else {
|
|
output += pos;
|
|
}
|
|
});
|
|
|
|
return output;
|
|
},
|
|
|
|
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
SUBS_PLAINTEXT: "ABCDEFGHIJKLMNOPQRSTUVWXYZ",
|
|
/**
|
|
* @constant
|
|
* @default
|
|
*/
|
|
SUBS_CIPHERTEXT: "XYZABCDEFGHIJKLMNOPQRSTUVW",
|
|
|
|
/**
|
|
* Substitute operation.
|
|
*
|
|
* @param {string} input
|
|
* @param {Object[]} args
|
|
* @returns {string}
|
|
*/
|
|
runSubstitute: function (input, args) {
|
|
let plaintext = Utils.expandAlphRange(args[0]).join(""),
|
|
ciphertext = Utils.expandAlphRange(args[1]).join(""),
|
|
output = "",
|
|
index = -1;
|
|
|
|
if (plaintext.length !== ciphertext.length) {
|
|
output = "Warning: Plaintext and Ciphertext lengths differ\n\n";
|
|
}
|
|
|
|
for (let i = 0; i < input.length; i++) {
|
|
index = plaintext.indexOf(input[i]);
|
|
output += index > -1 && index < ciphertext.length ? ciphertext[index] : input[i];
|
|
}
|
|
|
|
return output;
|
|
},
|
|
|
|
|
|
/**
|
|
* A mapping of string formats to their classes in the CryptoJS library.
|
|
*
|
|
* @private
|
|
* @constant
|
|
*/
|
|
_format: {
|
|
"Hex": CryptoJS.enc.Hex,
|
|
"Base64": CryptoJS.enc.Base64,
|
|
"UTF8": CryptoJS.enc.Utf8,
|
|
"UTF16": CryptoJS.enc.Utf16,
|
|
"UTF16LE": CryptoJS.enc.Utf16LE,
|
|
"UTF16BE": CryptoJS.enc.Utf16BE,
|
|
"Latin1": CryptoJS.enc.Latin1,
|
|
},
|
|
|
|
};
|
|
|
|
export default Cipher;
|
|
|
|
|
|
/**
|
|
* Overwriting the CryptoJS OpenSSL key derivation function so that it is possible to not pass a
|
|
* salt in.
|
|
|
|
* @param {string} password - The password to derive from.
|
|
* @param {number} keySize - The size in words of the key to generate.
|
|
* @param {number} ivSize - The size in words of the IV to generate.
|
|
* @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be
|
|
* generated randomly. If set to false, no salt will be added.
|
|
*
|
|
* @returns {CipherParams} A cipher params object with the key, IV, and salt.
|
|
*
|
|
* @static
|
|
*
|
|
* @example
|
|
* // Randomly generates a salt
|
|
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
|
|
* // Uses the salt 'saltsalt'
|
|
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
|
|
* // Does not use a salt
|
|
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, false);
|
|
*/
|
|
CryptoJS.kdf.OpenSSL.execute = function (password, keySize, ivSize, salt) {
|
|
// Generate random salt if no salt specified and not set to false
|
|
// This line changed from `if (!salt) {` to the following
|
|
if (salt === undefined || salt === null) {
|
|
salt = CryptoJS.lib.WordArray.random(64/8);
|
|
}
|
|
|
|
// Derive key and IV
|
|
const key = CryptoJS.algo.EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt);
|
|
|
|
// Separate key and IV
|
|
const iv = CryptoJS.lib.WordArray.create(key.words.slice(keySize), ivSize * 4);
|
|
key.sigBytes = keySize * 4;
|
|
|
|
// Return params
|
|
return CryptoJS.lib.CipherParams.create({ key: key, iv: iv, salt: salt });
|
|
};
|
|
|
|
|
|
/**
|
|
* Override for the CryptoJS Hex encoding parser to remove whitespace before attempting to parse
|
|
* the hex string.
|
|
*
|
|
* @param {string} hexStr
|
|
* @returns {CryptoJS.lib.WordArray}
|
|
*/
|
|
CryptoJS.enc.Hex.parse = function (hexStr) {
|
|
// Remove whitespace
|
|
hexStr = hexStr.replace(/\s/g, "");
|
|
|
|
// Shortcut
|
|
const hexStrLength = hexStr.length;
|
|
|
|
// Convert
|
|
const words = [];
|
|
for (let i = 0; i < hexStrLength; i += 2) {
|
|
words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
|
|
}
|
|
|
|
return new CryptoJS.lib.WordArray.init(words, hexStrLength / 2);
|
|
};
|