/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "spl_api_impl.hpp" #include "spl_ctr_drbg.hpp" #include "spl_key_slot_cache.hpp" namespace ams::spl::impl { namespace { /* Convenient defines. */ constexpr size_t DeviceAddressSpaceAlign = 0x400000; constexpr u32 WorkBufferMapBase = 0x80000000u; constexpr u32 ComputeAesInMapBase = 0x90000000u; constexpr u32 ComputeAesOutMapBase = 0xC0000000u; constexpr size_t ComputeAesSizeMax = static_cast(ComputeAesOutMapBase - ComputeAesInMapBase); constexpr size_t RsaPrivateKeySize = 0x100; constexpr size_t DeviceUniqueDataMetaSize = 0x30; constexpr size_t LabelDigestSizeMax = 0x20; constexpr size_t WorkBufferSizeMax = 0x800; constexpr s32 MaxPhysicalAesKeySlots = 6; constexpr s32 MaxPhysicalAesKeySlotsDeprecated = 4; constexpr s32 MaxVirtualAesKeySlots = 9; /* KeySlot management. */ constinit KeySlotCache g_keyslot_cache; constinit util::optional g_keyslot_cache_entry[MaxPhysicalAesKeySlots]; inline s32 GetMaxPhysicalKeySlots() { return (hos::GetVersion() >= hos::Version_6_0_0) ? MaxPhysicalAesKeySlots : MaxPhysicalAesKeySlotsDeprecated; } constexpr s32 VirtualKeySlotMin = 16; constexpr s32 VirtualKeySlotMax = VirtualKeySlotMin + MaxVirtualAesKeySlots - 1; constexpr inline bool IsVirtualKeySlot(s32 keyslot) { return VirtualKeySlotMin <= keyslot && keyslot <= VirtualKeySlotMax; } inline bool IsPhysicalKeySlot(s32 keyslot) { return keyslot < GetMaxPhysicalKeySlots(); } constexpr inline s32 GetVirtualKeySlotIndex(s32 keyslot) { AMS_ASSERT(IsVirtualKeySlot(keyslot)); return keyslot - VirtualKeySlotMin; } constexpr inline s32 MakeVirtualKeySlot(s32 index) { const s32 virt_slot = index + VirtualKeySlotMin; AMS_ASSERT(IsVirtualKeySlot(virt_slot)); return virt_slot; } void InitializeKeySlotCache() { for (s32 i = 0; i < MaxPhysicalAesKeySlots; i++) { g_keyslot_cache_entry[i].emplace(i); g_keyslot_cache.AddEntry(std::addressof(g_keyslot_cache_entry[i].value())); } } enum class KeySlotContentType { None = 0, AesKey = 1, PreparedKey = 2, }; struct KeySlotContents { KeySlotContentType type; union { struct { AccessKey access_key; KeySource key_source; } aes_key; struct { AccessKey access_key; } prepared_key; }; }; constinit const void *g_keyslot_owners[MaxVirtualAesKeySlots]; constinit KeySlotContents g_keyslot_contents[MaxVirtualAesKeySlots]; constinit KeySlotContents g_physical_keyslot_contents_for_backwards_compatibility[MaxPhysicalAesKeySlots]; void ClearPhysicalKeySlot(s32 keyslot) { AMS_ASSERT(IsPhysicalKeySlot(keyslot)); AccessKey access_key = {}; KeySource key_source = {}; smc::LoadAesKey(keyslot, access_key, key_source); } s32 GetPhysicalKeySlot(s32 keyslot, bool load) { s32 phys_slot = -1; KeySlotContents *contents = nullptr; if (hos::GetVersion() == hos::Version_1_0_0 && IsPhysicalKeySlot(keyslot)) { /* On 1.0.0, we allow the use of physical keyslots. */ phys_slot = keyslot; contents = std::addressof(g_physical_keyslot_contents_for_backwards_compatibility[phys_slot]); /* If the physical slot is already loaded, we're good. */ if (g_keyslot_cache.FindPhysical(phys_slot)) { return phys_slot; } } else { /* This should be a virtual keyslot. */ AMS_ASSERT(IsVirtualKeySlot(keyslot)); /* Try to find a physical slot in the cache. */ if (g_keyslot_cache.Find(std::addressof(phys_slot), keyslot)) { return phys_slot; } /* Allocate a physical slot. */ phys_slot = g_keyslot_cache.Allocate(keyslot); contents = std::addressof(g_keyslot_contents[GetVirtualKeySlotIndex(keyslot)]); } /* Ensure the contents of the keyslot. */ if (load) { switch (contents->type) { case KeySlotContentType::None: ClearPhysicalKeySlot(phys_slot); break; case KeySlotContentType::AesKey: R_ABORT_UNLESS(smc::ConvertResult(smc::LoadAesKey(phys_slot, contents->aes_key.access_key, contents->aes_key.key_source))); break; case KeySlotContentType::PreparedKey: R_ABORT_UNLESS(smc::ConvertResult(smc::LoadPreparedAesKey(phys_slot, contents->prepared_key.access_key))); break; AMS_UNREACHABLE_DEFAULT_CASE(); } } return phys_slot; } Result LoadVirtualAesKey(s32 keyslot, const AccessKey &access_key, const KeySource &key_source) { /* Ensure we can load into the slot. */ const s32 phys_slot = GetPhysicalKeySlot(keyslot, false); R_TRY(smc::ConvertResult(smc::LoadAesKey(phys_slot, access_key, key_source))); /* Update our contents. */ const s32 index = GetVirtualKeySlotIndex(keyslot); g_keyslot_contents[index].type = KeySlotContentType::AesKey; g_keyslot_contents[index].aes_key.access_key = access_key; g_keyslot_contents[index].aes_key.key_source = key_source; return ResultSuccess(); } Result LoadVirtualPreparedAesKey(s32 keyslot, const AccessKey &access_key) { /* Ensure we can load into the slot. */ const s32 phys_slot = GetPhysicalKeySlot(keyslot, false); R_TRY(smc::ConvertResult(smc::LoadPreparedAesKey(phys_slot, access_key))); /* Update our contents. */ const s32 index = GetVirtualKeySlotIndex(keyslot); g_keyslot_contents[index].type = KeySlotContentType::PreparedKey; g_keyslot_contents[index].prepared_key.access_key = access_key; return ResultSuccess(); } /* Type definitions. */ class ScopedAesKeySlot { private: s32 slot; bool has_slot; public: ScopedAesKeySlot() : slot(-1), has_slot(false) { /* ... */ } ~ScopedAesKeySlot() { if (this->has_slot) { DeallocateAesKeySlot(slot, this); } } u32 GetKeySlot() const { return this->slot; } Result Allocate() { R_TRY(AllocateAesKeySlot(&this->slot, this)); this->has_slot = true; return ResultSuccess(); } }; struct SeLinkedListEntry { u32 num_entries; u32 address; u32 size; }; struct SeCryptContext { SeLinkedListEntry in; SeLinkedListEntry out; }; class DeviceAddressSpaceMapHelper { private: Handle das_hnd; u64 dst_addr; u64 src_addr; size_t size; svc::MemoryPermission perm; public: DeviceAddressSpaceMapHelper(Handle h, u64 dst, u64 src, size_t sz, svc::MemoryPermission p) : das_hnd(h), dst_addr(dst), src_addr(src), size(sz), perm(p) { R_ABORT_UNLESS(svc::MapDeviceAddressSpaceAligned(this->das_hnd, dd::GetCurrentProcessHandle(), this->src_addr, this->size, this->dst_addr, this->perm)); } ~DeviceAddressSpaceMapHelper() { R_ABORT_UNLESS(svc::UnmapDeviceAddressSpace(this->das_hnd, dd::GetCurrentProcessHandle(), this->src_addr, this->size, this->dst_addr)); } }; /* Global variables. */ constinit CtrDrbg g_drbg; constinit os::InterruptEventType g_se_event; constinit os::SystemEventType g_se_keyslot_available_event; constinit Handle g_se_das_hnd; constinit u32 g_se_mapped_work_buffer_addr; alignas(os::MemoryPageSize) constinit u8 g_work_buffer[2 * WorkBufferSizeMax]; constinit os::SdkMutex g_async_op_lock; constinit BootReasonValue g_boot_reason; constinit bool g_boot_reason_set; /* Boot Reason accessors. */ BootReasonValue GetBootReason() { return g_boot_reason; } bool IsBootReasonSet() { return g_boot_reason_set; } /* Initialization functionality. */ void InitializeCtrDrbg() { u8 seed[CtrDrbg::SeedSize]; AMS_ABORT_UNLESS(smc::GenerateRandomBytes(seed, sizeof(seed)) == smc::Result::Success); g_drbg.Initialize(seed); } void InitializeSeEvents() { u64 irq_num; AMS_ABORT_UNLESS(smc::GetConfig(&irq_num, 1, ConfigItem::SecurityEngineInterruptNumber) == smc::Result::Success); os::InitializeInterruptEvent(std::addressof(g_se_event), irq_num, os::EventClearMode_AutoClear); R_ABORT_UNLESS(os::CreateSystemEvent(std::addressof(g_se_keyslot_available_event), os::EventClearMode_AutoClear, true)); os::SignalSystemEvent(std::addressof(g_se_keyslot_available_event)); } void InitializeDeviceAddressSpace() { /* Create Address Space. */ R_ABORT_UNLESS(svc::CreateDeviceAddressSpace(&g_se_das_hnd, 0, (1ul << 32))); /* Attach it to the SE. */ R_ABORT_UNLESS(svc::AttachDeviceAddressSpace(svc::DeviceName_Se, g_se_das_hnd)); const u64 work_buffer_addr = reinterpret_cast(g_work_buffer); g_se_mapped_work_buffer_addr = WorkBufferMapBase + (work_buffer_addr % DeviceAddressSpaceAlign); /* Map the work buffer for the SE. */ R_ABORT_UNLESS(svc::MapDeviceAddressSpaceAligned(g_se_das_hnd, dd::GetCurrentProcessHandle(), work_buffer_addr, sizeof(g_work_buffer), g_se_mapped_work_buffer_addr, svc::MemoryPermission_ReadWrite)); } /* Internal RNG functionality. */ Result GenerateRandomBytesInternal(void *out, size_t size) { if (!g_drbg.GenerateRandomBytes(out, size)) { /* We need to reseed. */ { u8 seed[CtrDrbg::SeedSize]; smc::Result res = smc::GenerateRandomBytes(seed, sizeof(seed)); if (res != smc::Result::Success) { return smc::ConvertResult(res); } g_drbg.Reseed(seed); g_drbg.GenerateRandomBytes(out, size); } } return ResultSuccess(); } /* Internal async implementation functionality. */ void WaitSeOperationComplete() { os::WaitInterruptEvent(std::addressof(g_se_event)); } smc::Result WaitCheckStatus(smc::AsyncOperationKey op_key) { WaitSeOperationComplete(); smc::Result op_res; smc::Result res = smc::GetResult(&op_res, op_key); if (res != smc::Result::Success) { return res; } return op_res; } smc::Result WaitGetResult(void *out_buf, size_t out_buf_size, smc::AsyncOperationKey op_key) { WaitSeOperationComplete(); smc::Result op_res; smc::Result res = smc::GetResultData(&op_res, out_buf, out_buf_size, op_key); if (res != smc::Result::Success) { return res; } return op_res; } /* Internal KeySlot utility. */ Result ValidateAesKeySlot(s32 keyslot, const void *owner) { /* Allow the use of physical keyslots on 1.0.0. */ if (hos::GetVersion() == hos::Version_1_0_0) { R_SUCCEED_IF(IsPhysicalKeySlot(keyslot)); } R_UNLESS(IsVirtualKeySlot(keyslot), spl::ResultInvalidKeySlot()); const s32 index = GetVirtualKeySlotIndex(keyslot); R_UNLESS(g_keyslot_owners[index] == owner, spl::ResultInvalidKeySlot()); return ResultSuccess(); } /* Helper to do a single AES block decryption. */ smc::Result DecryptAesBlock(s32 keyslot, void *dst, const void *src) { struct DecryptAesBlockLayout { SeCryptContext crypt_ctx; u8 in_block[AES_BLOCK_SIZE] __attribute__((aligned(AES_BLOCK_SIZE))); u8 out_block[AES_BLOCK_SIZE] __attribute__((aligned(AES_BLOCK_SIZE))); }; DecryptAesBlockLayout *layout = reinterpret_cast(g_work_buffer); layout->crypt_ctx.in.num_entries = 0; layout->crypt_ctx.in.address = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, in_block); layout->crypt_ctx.in.size = sizeof(layout->in_block); layout->crypt_ctx.out.num_entries = 0; layout->crypt_ctx.out.address = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, out_block); layout->crypt_ctx.out.size = sizeof(layout->out_block); std::memcpy(layout->in_block, src, sizeof(layout->in_block)); armDCacheFlush(layout, sizeof(*layout)); { std::scoped_lock lk(g_async_op_lock); smc::AsyncOperationKey op_key; const IvCtr iv_ctr = {}; const u32 mode = smc::GetComputeAesMode(smc::CipherMode::CbcDecrypt, GetPhysicalKeySlot(keyslot, true)); const u32 dst_ll_addr = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, crypt_ctx.out); const u32 src_ll_addr = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, crypt_ctx.in); smc::Result res = smc::ComputeAes(&op_key, mode, iv_ctr, dst_ll_addr, src_ll_addr, sizeof(layout->in_block)); if (res != smc::Result::Success) { return res; } if ((res = WaitCheckStatus(op_key)) != smc::Result::Success) { return res; } } armDCacheFlush(layout, sizeof(*layout)); std::memcpy(dst, layout->out_block, sizeof(layout->out_block)); return smc::Result::Success; } /* Implementation wrappers for API commands. */ Result DecryptAndStoreDeviceUniqueKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) { struct DecryptAndStoreDeviceUniqueKeyLayout { u8 data[DeviceUniqueDataMetaSize + 2 * RsaPrivateKeySize + 0x10]; }; DecryptAndStoreDeviceUniqueKeyLayout *layout = reinterpret_cast(g_work_buffer); /* Validate size. */ R_UNLESS(src_size <= sizeof(DecryptAndStoreDeviceUniqueKeyLayout), spl::ResultInvalidSize()); std::memcpy(layout, src, src_size); armDCacheFlush(layout, sizeof(*layout)); smc::Result smc_res; if (hos::GetVersion() >= hos::Version_5_0_0) { smc_res = smc::DecryptDeviceUniqueData(layout->data, src_size, access_key, key_source, static_cast(option)); } else { smc_res = smc::DecryptAndStoreGcKey(layout->data, src_size, access_key, key_source, option); } return smc::ConvertResult(smc_res); } Result ModularExponentiateWithStorageKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size, smc::ModularExponentiateWithStorageKeyMode mode) { struct ModularExponentiateWithStorageKeyLayout { u8 base[0x100]; u8 mod[0x100]; }; ModularExponentiateWithStorageKeyLayout *layout = reinterpret_cast(g_work_buffer); /* Validate sizes. */ R_UNLESS(base_size <= sizeof(layout->base), spl::ResultInvalidSize()); R_UNLESS(mod_size <= sizeof(layout->mod), spl::ResultInvalidSize()); R_UNLESS(out_size <= WorkBufferSizeMax, spl::ResultInvalidSize()); /* Copy data into work buffer. */ const size_t base_ofs = sizeof(layout->base) - base_size; const size_t mod_ofs = sizeof(layout->mod) - mod_size; std::memset(layout, 0, sizeof(*layout)); std::memcpy(layout->base + base_ofs, base, base_size); std::memcpy(layout->mod + mod_ofs, mod, mod_size); /* Do exp mod operation. */ armDCacheFlush(layout, sizeof(*layout)); { std::scoped_lock lk(g_async_op_lock); smc::AsyncOperationKey op_key; smc::Result res = smc::ModularExponentiateWithStorageKey(&op_key, layout->base, layout->mod, mode); if (res != smc::Result::Success) { return smc::ConvertResult(res); } if ((res = WaitGetResult(g_work_buffer, out_size, op_key)) != smc::Result::Success) { return smc::ConvertResult(res); } } armDCacheFlush(g_work_buffer, sizeof(out_size)); std::memcpy(out, g_work_buffer, out_size); return ResultSuccess(); } Result PrepareEsDeviceUniqueKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation, smc::EsCommonKeyType type) { struct PrepareEsDeviceUniqueKeyLayout { u8 base[0x100]; u8 mod[0x100]; }; PrepareEsDeviceUniqueKeyLayout *layout = reinterpret_cast(g_work_buffer); /* Validate sizes. */ R_UNLESS(base_size <= sizeof(layout->base), spl::ResultInvalidSize()); R_UNLESS(mod_size <= sizeof(layout->mod), spl::ResultInvalidSize()); R_UNLESS(label_digest_size <= LabelDigestSizeMax, spl::ResultInvalidSize()); /* Copy data into work buffer. */ const size_t base_ofs = sizeof(layout->base) - base_size; const size_t mod_ofs = sizeof(layout->mod) - mod_size; std::memset(layout, 0, sizeof(*layout)); std::memcpy(layout->base + base_ofs, base, base_size); std::memcpy(layout->mod + mod_ofs, mod, mod_size); /* Do exp mod operation. */ armDCacheFlush(layout, sizeof(*layout)); { std::scoped_lock lk(g_async_op_lock); smc::AsyncOperationKey op_key; smc::Result res = smc::PrepareEsDeviceUniqueKey(&op_key, layout->base, layout->mod, label_digest, label_digest_size, smc::GetPrepareEsDeviceUniqueKeyOption(type, generation)); if (res != smc::Result::Success) { return smc::ConvertResult(res); } if ((res = WaitGetResult(g_work_buffer, sizeof(*out_access_key), op_key)) != smc::Result::Success) { return smc::ConvertResult(res); } } armDCacheFlush(g_work_buffer, sizeof(*out_access_key)); std::memcpy(out_access_key, g_work_buffer, sizeof(*out_access_key)); return ResultSuccess(); } } /* Initialization. */ void Initialize() { /* Initialize the Drbg. */ InitializeCtrDrbg(); /* Initialize SE interrupt + keyslot events. */ InitializeSeEvents(); /* Initialize DAS for the SE. */ InitializeDeviceAddressSpace(); /* Initialize the keyslot cache. */ InitializeKeySlotCache(); } /* General. */ Result GetConfig(u64 *out, ConfigItem which) { /* Nintendo explicitly blacklists package2 hash here, amusingly. */ /* This is not blacklisted in safemode, but we're never in safe mode... */ R_UNLESS(which != ConfigItem::Package2Hash, spl::ResultInvalidArgument()); smc::Result res = smc::GetConfig(out, 1, which); /* Nintendo has some special handling here for hardware type/is_retail. */ if (res == smc::Result::InvalidArgument) { switch (which) { case ConfigItem::HardwareType: *out = static_cast(HardwareType::Icosa); res = smc::Result::Success; break; case ConfigItem::HardwareState: *out = HardwareState_Development; res = smc::Result::Success; break; default: break; } } return smc::ConvertResult(res); } Result ModularExponentiate(void *out, size_t out_size, const void *base, size_t base_size, const void *exp, size_t exp_size, const void *mod, size_t mod_size) { struct ModularExponentiateLayout { u8 base[0x100]; u8 exp[0x100]; u8 mod[0x100]; }; ModularExponentiateLayout *layout = reinterpret_cast(g_work_buffer); /* Validate sizes. */ R_UNLESS(base_size <= sizeof(layout->base), spl::ResultInvalidSize()); R_UNLESS(exp_size <= sizeof(layout->exp), spl::ResultInvalidSize()); R_UNLESS(mod_size <= sizeof(layout->mod), spl::ResultInvalidSize()); R_UNLESS(out_size <= WorkBufferSizeMax, spl::ResultInvalidSize()); /* Copy data into work buffer. */ const size_t base_ofs = sizeof(layout->base) - base_size; const size_t mod_ofs = sizeof(layout->mod) - mod_size; std::memset(layout, 0, sizeof(*layout)); std::memcpy(layout->base + base_ofs, base, base_size); std::memcpy(layout->exp, exp, exp_size); std::memcpy(layout->mod + mod_ofs, mod, mod_size); /* Do exp mod operation. */ armDCacheFlush(layout, sizeof(*layout)); { std::scoped_lock lk(g_async_op_lock); smc::AsyncOperationKey op_key; smc::Result res = smc::ModularExponentiate(&op_key, layout->base, layout->exp, exp_size, layout->mod); if (res != smc::Result::Success) { return smc::ConvertResult(res); } if ((res = WaitGetResult(g_work_buffer, out_size, op_key)) != smc::Result::Success) { return smc::ConvertResult(res); } } armDCacheFlush(g_work_buffer, sizeof(out_size)); std::memcpy(out, g_work_buffer, out_size); return ResultSuccess(); } Result SetConfig(ConfigItem which, u64 value) { return smc::ConvertResult(smc::SetConfig(which, &value, 1)); } Result GenerateRandomBytes(void *out, size_t size) { u8 *cur_dst = reinterpret_cast(out); for (size_t ofs = 0; ofs < size; ofs += CtrDrbg::MaxRequestSize) { const size_t cur_size = std::min(size - ofs, CtrDrbg::MaxRequestSize); R_TRY(GenerateRandomBytesInternal(cur_dst, size)); cur_dst += cur_size; } return ResultSuccess(); } Result IsDevelopment(bool *out) { u64 hardware_state; R_TRY(impl::GetConfig(&hardware_state, ConfigItem::HardwareState)); *out = (hardware_state == HardwareState_Development); return ResultSuccess(); } Result SetBootReason(BootReasonValue boot_reason) { R_UNLESS(!IsBootReasonSet(), spl::ResultBootReasonAlreadySet()); g_boot_reason = boot_reason; g_boot_reason_set = true; return ResultSuccess(); } Result GetBootReason(BootReasonValue *out) { R_UNLESS(IsBootReasonSet(), spl::ResultBootReasonNotSet()); *out = GetBootReason(); return ResultSuccess(); } /* Crypto. */ Result GenerateAesKek(AccessKey *out_access_key, const KeySource &key_source, u32 generation, u32 option) { return smc::ConvertResult(smc::GenerateAesKek(out_access_key, key_source, generation, option)); } Result LoadAesKey(s32 keyslot, const void *owner, const AccessKey &access_key, const KeySource &key_source) { R_TRY(ValidateAesKeySlot(keyslot, owner)); return LoadVirtualAesKey(keyslot, access_key, key_source); } Result GenerateAesKey(AesKey *out_key, const AccessKey &access_key, const KeySource &key_source) { static constexpr KeySource s_generate_aes_key_source = { .data = {0x89, 0x61, 0x5E, 0xE0, 0x5C, 0x31, 0xB6, 0x80, 0x5F, 0xE5, 0x8F, 0x3D, 0xA2, 0x4F, 0x7A, 0xA8} }; ScopedAesKeySlot keyslot_holder; R_TRY(keyslot_holder.Allocate()); R_TRY(LoadVirtualAesKey(keyslot_holder.GetKeySlot(), access_key, s_generate_aes_key_source)); return smc::ConvertResult(DecryptAesBlock(keyslot_holder.GetKeySlot(), out_key, &key_source)); } Result DecryptAesKey(AesKey *out_key, const KeySource &key_source, u32 generation, u32 option) { static constexpr KeySource s_decrypt_aes_key_source = { .data = {0x11, 0x70, 0x24, 0x2B, 0x48, 0x69, 0x11, 0xF1, 0x11, 0xB0, 0x0C, 0x47, 0x7C, 0xC3, 0xEF, 0x7E} }; AccessKey access_key; R_TRY(GenerateAesKek(&access_key, s_decrypt_aes_key_source, generation, option)); return GenerateAesKey(out_key, access_key, key_source); } Result ComputeCtr(void *dst, size_t dst_size, s32 keyslot, const void *owner, const void *src, size_t src_size, const IvCtr &iv_ctr) { R_TRY(ValidateAesKeySlot(keyslot, owner)); /* Succeed immediately if there's nothing to crypt. */ if (src_size == 0) { return ResultSuccess(); } /* Validate sizes. */ R_UNLESS(src_size <= dst_size, spl::ResultInvalidSize()); R_UNLESS(util::IsAligned(src_size, AES_BLOCK_SIZE), spl::ResultInvalidSize()); /* We can only map 0x400000 aligned buffers for the SE. With that in mind, we have some math to do. */ const uintptr_t src_addr = reinterpret_cast(src); const uintptr_t dst_addr = reinterpret_cast(dst); const uintptr_t src_addr_page_aligned = util::AlignDown(src_addr, os::MemoryPageSize); const uintptr_t dst_addr_page_aligned = util::AlignDown(dst_addr, os::MemoryPageSize); const size_t src_size_page_aligned = util::AlignUp(src_addr + src_size, os::MemoryPageSize) - src_addr_page_aligned; const size_t dst_size_page_aligned = util::AlignUp(dst_addr + dst_size, os::MemoryPageSize) - dst_addr_page_aligned; const u32 src_se_map_addr = ComputeAesInMapBase + (src_addr_page_aligned % DeviceAddressSpaceAlign); const u32 dst_se_map_addr = ComputeAesOutMapBase + (dst_addr_page_aligned % DeviceAddressSpaceAlign); const u32 src_se_addr = ComputeAesInMapBase + (src_addr % DeviceAddressSpaceAlign); const u32 dst_se_addr = ComputeAesOutMapBase + (dst_addr % DeviceAddressSpaceAlign); /* Validate aligned sizes. */ R_UNLESS(src_size_page_aligned <= ComputeAesSizeMax, spl::ResultInvalidSize()); R_UNLESS(dst_size_page_aligned <= ComputeAesSizeMax, spl::ResultInvalidSize()); /* Helpers for mapping/unmapping. */ DeviceAddressSpaceMapHelper in_mapper(g_se_das_hnd, src_se_map_addr, src_addr_page_aligned, src_size_page_aligned, svc::MemoryPermission_Read); DeviceAddressSpaceMapHelper out_mapper(g_se_das_hnd, dst_se_map_addr, dst_addr_page_aligned, dst_size_page_aligned, svc::MemoryPermission_Write); /* Setup SE linked list entries. */ SeCryptContext *crypt_ctx = reinterpret_cast(g_work_buffer); crypt_ctx->in.num_entries = 0; crypt_ctx->in.address = src_se_addr; crypt_ctx->in.size = src_size; crypt_ctx->out.num_entries = 0; crypt_ctx->out.address = dst_se_addr; crypt_ctx->out.size = dst_size; armDCacheFlush(crypt_ctx, sizeof(*crypt_ctx)); armDCacheFlush(const_cast(src), src_size); armDCacheFlush(dst, dst_size); { std::scoped_lock lk(g_async_op_lock); smc::AsyncOperationKey op_key; const u32 mode = smc::GetComputeAesMode(smc::CipherMode::Ctr, GetPhysicalKeySlot(keyslot, true)); const u32 dst_ll_addr = g_se_mapped_work_buffer_addr + offsetof(SeCryptContext, out); const u32 src_ll_addr = g_se_mapped_work_buffer_addr + offsetof(SeCryptContext, in); smc::Result res = smc::ComputeAes(&op_key, mode, iv_ctr, dst_ll_addr, src_ll_addr, src_size); if (res != smc::Result::Success) { return smc::ConvertResult(res); } if ((res = WaitCheckStatus(op_key)) != smc::Result::Success) { return smc::ConvertResult(res); } } armDCacheFlush(dst, dst_size); return ResultSuccess(); } Result ComputeCmac(Cmac *out_cmac, s32 keyslot, const void *owner, const void *data, size_t size) { R_TRY(ValidateAesKeySlot(keyslot, owner)); R_UNLESS(size <= WorkBufferSizeMax, spl::ResultInvalidSize()); std::memcpy(g_work_buffer, data, size); return smc::ConvertResult(smc::ComputeCmac(out_cmac, GetPhysicalKeySlot(keyslot, true), g_work_buffer, size)); } Result AllocateAesKeySlot(s32 *out_keyslot, const void *owner) { /* Find a virtual keyslot. */ for (s32 i = 0; i < MaxVirtualAesKeySlots; i++) { if (g_keyslot_owners[i] == nullptr) { g_keyslot_owners[i] = owner; g_keyslot_contents[i] = { .type = KeySlotContentType::None }; *out_keyslot = MakeVirtualKeySlot(i); return ResultSuccess(); } } os::ClearSystemEvent(std::addressof(g_se_keyslot_available_event)); return spl::ResultOutOfKeySlots(); } Result DeallocateAesKeySlot(s32 keyslot, const void *owner) { /* Only virtual keyslots can be freed. */ R_UNLESS(IsVirtualKeySlot(keyslot), spl::ResultInvalidKeySlot()); /* Ensure the keyslot is owned. */ R_TRY(ValidateAesKeySlot(keyslot, owner)); /* Clear the physical keyslot, if we're cached. */ s32 phys_slot; if (g_keyslot_cache.Release(std::addressof(phys_slot), keyslot)) { ClearPhysicalKeySlot(phys_slot); } /* Clear the virtual keyslot. */ const auto index = GetVirtualKeySlotIndex(keyslot); g_keyslot_owners[index] = nullptr; g_keyslot_contents[index].type = KeySlotContentType::None; os::SignalSystemEvent(std::addressof(g_se_keyslot_available_event)); return ResultSuccess(); } /* RSA. */ Result DecryptDeviceUniqueData(void *dst, size_t dst_size, const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) { struct DecryptDeviceUniqueDataLayout { u8 data[RsaPrivateKeySize + DeviceUniqueDataMetaSize]; }; DecryptDeviceUniqueDataLayout *layout = reinterpret_cast(g_work_buffer); /* Validate size. */ R_UNLESS(src_size >= DeviceUniqueDataMetaSize, spl::ResultInvalidSize()); R_UNLESS(src_size <= sizeof(DecryptDeviceUniqueDataLayout), spl::ResultInvalidSize()); std::memcpy(layout->data, src, src_size); armDCacheFlush(layout, sizeof(*layout)); smc::Result smc_res; size_t copy_size = 0; if (hos::GetVersion() >= hos::Version_5_0_0) { copy_size = std::min(dst_size, src_size - DeviceUniqueDataMetaSize); smc_res = smc::DecryptDeviceUniqueData(layout->data, src_size, access_key, key_source, static_cast(option)); } else { smc_res = smc::DecryptDeviceUniqueData(©_size, layout->data, src_size, access_key, key_source, option); copy_size = std::min(dst_size, copy_size); } armDCacheFlush(layout, sizeof(*layout)); if (smc_res == smc::Result::Success) { std::memcpy(dst, layout->data, copy_size); } return smc::ConvertResult(smc_res); } /* SSL */ Result DecryptAndStoreSslClientCertKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source) { return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, static_cast(smc::DeviceUniqueDataMode::DecryptAndStoreSslKey)); } Result ModularExponentiateWithSslClientCertKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size) { return ModularExponentiateWithStorageKey(out, out_size, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::Ssl); } /* ES */ Result LoadEsDeviceKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) { if (hos::GetVersion() >= hos::Version_5_0_0) { return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, option); } else { struct LoadEsDeviceKeyLayout { u8 data[DeviceUniqueDataMetaSize + 2 * RsaPrivateKeySize + 0x10]; }; LoadEsDeviceKeyLayout *layout = reinterpret_cast(g_work_buffer); /* Validate size. */ R_UNLESS(src_size <= sizeof(LoadEsDeviceKeyLayout), spl::ResultInvalidSize()); std::memcpy(layout, src, src_size); armDCacheFlush(layout, sizeof(*layout)); return smc::ConvertResult(smc::LoadEsDeviceKey(layout->data, src_size, access_key, key_source, option)); } } Result PrepareEsTitleKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation) { return PrepareEsDeviceUniqueKey(out_access_key, base, base_size, mod, mod_size, label_digest, label_digest_size, generation, smc::EsCommonKeyType::TitleKey); } Result PrepareCommonEsTitleKey(AccessKey *out_access_key, const KeySource &key_source, u32 generation) { return smc::ConvertResult(smc::PrepareCommonEsTitleKey(out_access_key, key_source, generation)); } Result DecryptAndStoreDrmDeviceCertKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source) { return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, static_cast(smc::DeviceUniqueDataMode::DecryptAndStoreDrmDeviceCertKey)); } Result ModularExponentiateWithDrmDeviceCertKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size) { return ModularExponentiateWithStorageKey(out, out_size, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::DrmDeviceCert); } Result PrepareEsArchiveKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation) { return PrepareEsDeviceUniqueKey(out_access_key, base, base_size, mod, mod_size, label_digest, label_digest_size, generation, smc::EsCommonKeyType::ArchiveKey); } /* FS */ Result DecryptAndStoreGcKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) { return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, option); } Result DecryptGcMessage(u32 *out_size, void *dst, size_t dst_size, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size) { /* Validate sizes. */ R_UNLESS(dst_size <= WorkBufferSizeMax, spl::ResultInvalidSize()); R_UNLESS(label_digest_size == LabelDigestSizeMax, spl::ResultInvalidSize()); /* Nintendo doesn't check this result code, but we will. */ R_TRY(ModularExponentiateWithStorageKey(g_work_buffer, 0x100, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::Gc)); size_t data_size = crypto::DecodeRsa2048OaepSha256(dst, dst_size, label_digest, label_digest_size, g_work_buffer, 0x100); R_UNLESS(data_size > 0, spl::ResultDecryptionFailed()); *out_size = static_cast(data_size); return ResultSuccess(); } Result GenerateSpecificAesKey(AesKey *out_key, const KeySource &key_source, u32 generation, u32 which) { return smc::ConvertResult(smc::GenerateSpecificAesKey(out_key, key_source, generation, which)); } Result LoadPreparedAesKey(s32 keyslot, const void *owner, const AccessKey &access_key) { R_TRY(ValidateAesKeySlot(keyslot, owner)); return LoadVirtualPreparedAesKey(keyslot, access_key); } Result GetPackage2Hash(void *dst, const size_t size) { u64 hash[4]; R_UNLESS(size >= sizeof(hash), spl::ResultInvalidSize()); smc::Result smc_res; if ((smc_res = smc::GetConfig(hash, 4, ConfigItem::Package2Hash)) != smc::Result::Success) { return smc::ConvertResult(smc_res); } std::memcpy(dst, hash, sizeof(hash)); return ResultSuccess(); } /* Manu. */ Result ReencryptDeviceUniqueData(void *dst, size_t dst_size, const void *src, size_t src_size, const AccessKey &access_key_dec, const KeySource &source_dec, const AccessKey &access_key_enc, const KeySource &source_enc, u32 option) { struct ReencryptDeviceUniqueDataLayout { u8 data[DeviceUniqueDataMetaSize + 2 * RsaPrivateKeySize + 0x10]; AccessKey access_key_dec; KeySource source_dec; AccessKey access_key_enc; KeySource source_enc; }; ReencryptDeviceUniqueDataLayout *layout = reinterpret_cast(g_work_buffer); /* Validate size. */ R_UNLESS(src_size >= DeviceUniqueDataMetaSize, spl::ResultInvalidSize()); R_UNLESS(src_size <= sizeof(ReencryptDeviceUniqueDataLayout), spl::ResultInvalidSize()); std::memcpy(layout, src, src_size); layout->access_key_dec = access_key_dec; layout->source_dec = source_dec; layout->access_key_enc = access_key_enc; layout->source_enc = source_enc; armDCacheFlush(layout, sizeof(*layout)); smc::Result smc_res = smc::ReencryptDeviceUniqueData(layout->data, src_size, layout->access_key_dec, layout->source_dec, layout->access_key_enc, layout->source_enc, option); if (smc_res == smc::Result::Success) { size_t copy_size = std::min(dst_size, src_size); armDCacheFlush(layout, copy_size); std::memcpy(dst, layout->data, copy_size); } return smc::ConvertResult(smc_res); } /* Helper. */ Result DeallocateAllAesKeySlots(const void *owner) { for (s32 slot = VirtualKeySlotMin; slot <= VirtualKeySlotMax; ++slot) { if (g_keyslot_owners[GetVirtualKeySlotIndex(slot)] == owner) { DeallocateAesKeySlot(slot, owner); } } return ResultSuccess(); } Handle GetAesKeySlotAvailableEventHandle() { return os::GetReadableHandleOfSystemEvent(std::addressof(g_se_keyslot_available_event)); } }